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INTRODUCTION

When the flow of a fluid is numerically simulated in a region wlth

a complicated geometry, the theoretical basis for the simulation is a

combination of numerical, fluid dynamic, and geometric analyses. In

turbomachinery problems, the level of geometric complexity is usually

considerable. With increasing amounts of available computational power,

with computational fluid dynamic methods reaching a certain level of

maturity, and with geometric methods in a fairly primitive state, there

is a need to develop geometric analyses in order to consider applications

to problems with practical geometries. As a consequence, the emphasis

here shall be on geometric methods in computational fluid dynamics.

Throughout the development, a general viewpoint shall be adopted so that

geometric computational fluid dynamic algorithms can be formulated in a

manner which is applicable to broad classes of problems. The geometric

description of the flow regions will be given by coordinate generation

techniques. To express the equations of motion and the boundary condi-

tions relative to a coordinate system, the methods of tensor analysis

must be considered. After a'sufflclent amount of tensor analysis is

presented, general forms for the equations of motion and the boundary

conditions are developed. Moreover, with the consequent increase In the

possible number of terms in the equations to be solved, numerical methods

are considered in a manner for which large numbers of terms can be

handled in a systematic manner without the need to expllcltlywrlte or

code each term on a term by term basls.
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GEOMETRIC METHODS IN COMPUTATIONAL FLUID DYNAMICS

ABSTRACT

General methods are presented for the construction of geometric

computational fluid dynamic algorithms that can be applied to simulate

a wide varlets/ of flow flelds in various nontrlvlal regions. Partlcular

emphasis is given to the highly constrained geometric regions which

readily occur in turbomachlnery appllcatlons. The analysis /ncludes

basic developments with tensors, various forms for the equations of

motion, generallzed numerical methods and boundary conditions, and

various methods for coordlnate generation to meet the strong geometric

constraints of turbomachlnes. Coordinate generation is considered in

enough generality to yield mesh descriptions from one or more trans-

formations that are smoothly Joined together to form a composite mesh.

This paper was prepared for the short course on "Shock-Boundary Layer
Interaction in Turbomachines" at the'yon KarmanInstttute for Fluid Dynamics

in June 1980 and in compliance with AGARD Contract No. AGARD/OTAN/DPP/80/ll007.

This paper perta/ns to the part of the course entitled "Theoretical Solutions

to the Navier-Stokes Equations for Transonic Flow." Partial support was
supplied under NASA Contracts No. NAS3-22117 and No. NASl-15810.
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BASIS TENSOR ANALYS_S

The geometric complexity of the various regions within a typical

turbomachine is a major factor in the fluid dynamic analysis of any

partlcular region. Although the various regions are parts of Eucli-

dian space, the complexity is caused by region boundaries. To mathe-

matlcally describe and anlyze flows through such regions, the applica-

tion of coordinate transformations is a very effective method. Since

the physical laws governing fluid flow are independent of any particu-

lar coordinate transformation, the mathematical description must also

be coordinate Invarlant. Tensor analysis, however, is a study of the

pertinent coordinate Invariant quantities. As a result, the mathe-

matlcal description will be expressed in a tensor form. Since parts of

Euclidian space are bounded in some complicated fashion, tensor analysis

for our purpose shall be restlcted to Euclidian space.

Preliminaries

To start our examination of tensor analysis, let Rn denote an

n-dlmenslon Euclidian space, let QI' Q2"'''Un denote unit vectors

along the axes of a fixed Cartesian coordinate system on Rn, and let

x be a position vector in Rn. Since Rn is a Vector space, the posi-

tion vector can be expressed by the linear combination

where the Einstein summation convention has been employed.

when an index appears as both a subscript and a superscript it is assumed

to be s,-m,ed from 1 to n. This convention shall also be assumed with-

out any more mention in the subsequent discussion. In Eq. I, the :_ _

In particular,
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coefficients x are the Cartesian coordinates of the point x which

2
is commonly denoted by (xl,x ,...,xn). A two-dlmenslonal illustratlon

of Eq. I is given in Figure l where the geometric relatloushfp is clearly

displayed. Relative to the fixed Cartesian coordinates, let yly2,...yn

be a system of curvillnear coordinates. The relationship with the fixed

Cartesian coordinates is then given in the form

÷ i(yl Gix = x ...yn) (2)

by definition of the functions on the right hand side. WHen all except

one of the curvilinear coordinates are fixed, Eq. 2 defines a coordinate

curve with the non-flxed curvilinear coordinate as a parameterization.

2
X

A

x u 2

A

u 2

0

1
_-- x

-G

Figure i. The Cartesian Decomposition of the Position Vector in Two-Dimenslons

7 1
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Upon differentiation with respect to the non-flxed coordinate, a natural

tangent vector to the coordinate curve is obtained. Since partial deriva-

tives are taken by holdlng fixed all except the variable to be dlfferen-

flared, the natural tangent vectors to coordinate curves are Just partial

derivatives Of the position vector given in Eq. 2. In symbols, the natural

+

tangent vector ej to coordinate curves in the curvillnear variable

is given by

C3)

Since the natural tangent vector of Eq. 3 is defined at every point in the

domain of the coordinate transformation, it is a vector field as opposed

to a single vector. In parallel with Figure 1, a two-dimensional Illustra-

tion of the natural tangent vectors at a point x is depicted in Figure 2.

2
X

e 2

e12

x 1
y - constant

u2d
2

y - variable

yl . variable

y2 . constant

1
_X

Flzure 2. The Natural Tangent Vectors at a Point In Two-Dimenslons.



-4-

When the transformation of Eq. 2 is inserted into expression for the

natural tangent vector field of Eq. 3, we obtain

÷ _ _x i
(4)

where the last equallty is valid because derivatives of the constant

vectors ul vanish. Alternatlvely, the constancy of each G i implies

from Eq. I that ui " _/_xl which, in turn, leads to Eq. 4 when it is

/nserted into a chain rule expansion of Eq. 3. To interpret Eq. 4, a

Cartesian basis of the vector space Rn is transformed into the set of

natural tangent vectors by a Jacoblan transformation. If the transforma-

tion is nonslngular, then the natural tangent vectors are also a basis of

Rn. In particular, the 5acobian

must then be non-zero. In the two-dimensional illustration of Figure 2,

the Jacoblan is non-zero at the point x because the natural tangent

vectors displayed there are clearly a basis of R 2. Had eI and e2

been pointing in the same direction or had either one of them vanished,

then the transformation (Eq. 4) would have been slngular and 3acobian

would have vanished. As a consequence, the polnt_ise coordinate trans-

formation of Eq. 2 would have ,mpped a one or two dimensional object into

one of lesser dimension. A comBon example is given by the polar singulari-

ty where the one-dimensional sesment corresponding zero radius is mapped

onto the ortginwb/ch is zero-dimensional. In general, a singularity is

associated with a degeneracy in dimensionality of the pointwtse transfor-

mation of Eq. 2. When the transformation is nonsingular, there is no loss

D

r l _ir
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in dlmenslonallty and the inverse transformation

÷ _(x 1 ,x ny = ,... ) (6)

is valld in a neighborhood of the nonsiugular points by virtue of the In-

verse function theorem.

The Metric

Angles between coordinate curves and rates of change along coordinate

curves can be measured with dot products of the natural tangent vector

fields of Eq. 4. For notatlonal convenience, let the dot products be

represented by

giJ _ ei " ej

which is symmetric in the indices i and J

(7)

each of which vary from 1

to n. The similar set of dot products of unit Cartesian vectors Qi is,

however, of a special form: it is glven by _- _E - 6k£ where 6k_ is

the Kronecker delta symbol which Isunlty if the indices are equal and

vanishes otherwise. When Eq. 4 is inserted into Eq. 7 and when the

special form of the Cartesian dot products is applied, the dot products of

the natural tangent vectors are given by

axk 8x_

-

ax k ax k

ay t ayJ

(8)
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where the sum over k after the last equality is a slight abuse of the

summation convention since two superscripts are summed rather than a sub-

scrlpt-superscript pair. From Eq. 8 with i = J, the magnitude of the

natural tangent vector field to coordinate curves in the yJ varlable

(Eq. 4) becomes

(9)

which can also be recognized as the derivative of coordinate curve arc

length with respect to the curve parameterizatlon _. Since the index

J appears on both sides of the equation, note that its repetition which

is not summed does not conflict with a s,--matlon convention. With the

magnitudes (Eq. 9) establlshed for the natural tangent vector flelds

(Eq. 4), unit tangent vector fields can be defined along the coordinate

curves provided that the magnltudesdo not vanish and can consequently be

used for the respective normalizations. When dot products of the unit

vector flelds obtained by the normalizations are computed, angles between

coordinate curves can be determined. For the coordinate curves in the

yi and _ variables, respectively, the dot product which determines the

between them is given by

el _tu
cos 8ij " " = •

/giigJJ

an81e 8ij

(io)

A two-dimensional illustration of the angle 812 is displayed in Figure 2.

Unlike the higher dimensional cases, el2 - 821 is the only angle that

needs to be determined there. In the illustration, the magnitudes g/_ll"

g4_22 and the angle _2 are enough to determine the area of the

# m
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parallelosram defined by e l, e 2 and appropriate parallel translates.

area. J l[/ 21,in el iJ, uponsubstitut on Eq. 10,The reduces

to /g where g is the determinant of the matrix (glj). Intultlvely,

the area should be equal to the 5acoblan (Eq. 5), and consequently, the

= j2relationship g should be valid. From Eq. 8, the valldlty can, in

fact, be established not only for two-dimenslons but more generally for

any number of dimensions. Speclflclally, if A denotes the matrix from

the Jacobian transformation of Eq. 4 and if A t is the transpose of A,

then the determinant of Eq. 8 becomes

g - det(AtA) - (det At)(det A) - (det A) 2 - 52 , (ii)

from the determinant product rule and Invarlance wlth respect to transpose.

The singularity or nonslngularlty of a coordinate transformation can then

clearly be considered from the matrix of dot products or from the 5acoblan

transformation.

With the determination of coordinate curve arc length from the dot

products given in Eq. 9, a reasonable expectation is to determine the arc

length of an arbitrary curve from the full set of dot products given in

Eq. 8. Between two values t - a and t s b of a parameterlzation t

for an arbitrary curve x - _((t)), the curve arc length can be approxl-

mated by the linear distance between corresponding points on the curve.

When a given level of accuracy is specified, it can be obtained for choices

of a and b that are sufficiently close together. Moreover, in the

limit towards differential sizes the appoxlmatlon converges to an exact

equallty, assumlng that the curve is sufficiently smooth. The dlfferentlal

element of arc length ds is then given by
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(ds) 2 ÷ ÷" dx " dx • (13)

From a chain rule expansion, the differential of the Cartesian vector

fleld _ of Eq. 2 becomes

÷ i
d_ " _x-_--+dy i eldY

_yi
(14)

where the natural tangent vector fields (Eq. 3) were inserted for the last

equality. Upon substitution, the quadradlc expression for the arc length

differential becomes

('ds) 2" (_idyl) ° (_jd_)I (_jD ! _j)dyld_ -gijdyld_ , (15)

where the second equality results from dot product llnearity; the third,

from Eq. 7. Consequently, the rule for distance measurements with respect

to curvillnear variables is given entirely by the set of all dot products

between the natural tangent vector fields to coordinate curves (Eq. 7).

The rule is referred to as a metric and the dot products Eli are then

called metric coefficients [ 1 ]. When the rule is applied to the earller

case of arc length along a coordinate curve in the _ variable, the

result corresponds to the earlier statement followlng Eq. 9. To obtain

I k
a specific coordinate, curve in y_, the remaining variables y for

k # J must be constants which, in turn, leads to the vanishing dlfferen-

tlals: dyk - 0 for k _ J. Upon substitution, Eq. 15 reduces to the

unsm_ed expression (ds) 2 - g_j (d_) 2, establlshlng the expected corres-

pondence. In Figure 3, an appllcatlon of the metric is given for an

arbitraTy curve in uwo-dimenslons where a differential element of arc length

iiI
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A

2
Y - Coordinate

ds

_------Arbitrary Curve

Figure 3. Differentlal Element of Arc Length for an Arbitrary Curve in

Two-Dimenslons.

w

is to be computed between A and C alone the arbitrary curve. On a

differential level, all curves can be represented by the straight llne

segments, as illustrated. The distances along the coordinate curves in

1 2
y and y variables are given by "--_glldY 1 and "----¢g22dY2 respectively

along line segments AB and BC. From the angle el2, distances on the

legs of the right triangle ADC can be obtained. By the Pythagorean theorem,

the arc length expression is then
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= g11(dyl) 2 + 2/81182------_ (cos 812)dyldy 2 + 822(dy2) 2

= 811(dyl) 2 + 2 812dyldy 2 + g22(dy2) 2

(t6)

= 8ij dyid_ '

which as expected matches with the general form. The third equality in

Eq. 16 was the result of a direct substitution from Eq. i0; the last,

symmetry In the indices of the metric coefficients.

When the transformation of coordinates (Eq. 2) is nonsingular at a

point, the natural tangent vectors (Eq. 3) form a basis of the vector space

÷i ÷2 e+n be then be obtained by enforcement&n. A new basis e , e ,..., Can

of the orthogonaltty relationship

• • ej = _j (17)

for 1 _ i, J _ n. The symbol _ is a Kronecker delta which is equal to

the earlier Kronecker delta _lJ: it is unitywhen i = J and vanishes

other_rlse. A two-dlmensional illustration of the new (dual) basis is

given In FiEure 4. The orthogonallty properties are geometrically viewed

as the conmtructton of vector fields which are perpendicular to coordinate

÷1
curves. Xn the example, e is perpendicular to every y2_ coordiuate

÷2
curve at every point along each one. SJ_nilarly e is perpendicular to

the yl _ coordinate curve, as illustrated. Moreoever, in n-dimenslons

e_1 is perpendicular to all coord/nate surfaces corresponding to constant
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÷1
e

÷2
e

e2
2

Y - Coordinate

1
y - Coordinate

Figure 4. Dual Basis to the Natural Tangent Vectors in Two Dimensions

values of yi at all points along those surfaces. Since e belongs

to Rn, it can be expressed as a linear combination of the natural tangent

-_d ik_ ik
vectors in the form e = a ek for some coefficients a . When the

linear combination is inserted into Eq. 17 and subsequently when Eq. 7 is

aikgk i which indicates that the matrix (aIk)applied, we obtain j = _j

is Just the inverse of the matrix of metrica (gij) which exists since

g . j2 by Eq. 11 and J is nonvanishing by the nonsingularity of the

transformation. For uniformity in the notation for metrics, the elements

ika of the inverse matrix shall be denoted by Elk. With the uniform

metric notation, the transformation into the superscript basis is given by

. giJ_j , (lSa)
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+i gkigiJ_j J÷ = _kfor i = 1,2,...,n. BF matrix multiplication gki e = = _kej

which is

÷ ÷i
ek = gki e • (18b)

In sLmmary, transformations between subscripted and superscripted bases

of Rn are obtained by using the form of the metric that is compatible

with the Einstein summation convention of smmnlng subscrlpt-superscrlpt

palrsof indices. Since both subscripted and superscrlpted vectors are

÷

bases of R n, any vector v can be expressed as

= vk ek= i , (19)

where the coefficients are designated with superscripts and subscripts

in correspondence with the summation convention. Upon a direct substi-

tution from Eq. 18 and an application of linear independence, the coeffl-

clents of Eq. 19 are related by

k
vi = Sikv , (20a)

and

vk = gklv i • (20b)

Consequently, the metric can be used to raise and lower the indices of

either the vector bases or their coefficients by adhering to the summation

convention. As a matter of termonology, subscripted quantities, have been

called covari@nt quantities: superscrlpted ones, contravsrlant [ 2 ].
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When the dot products of the superscripted vectors are considered,

a result similar to the metric expression in Eq. 7 could be anticipated.

_k
To form a superscripted version, the dot product of e with both sides

of Eq. 18a is taken. The right hand side is given by

8 uj " g where the definition of Eq. 17 has been applied.

Thus, in parallel with the dot product representatlon of giJ' the inverse

to the matrix of metrics has elements given in the dot product form

ik +i
g =e " e , (21)

for i,J = 1,2,...,n. Moreover, if A denotes the 3acoblan transforma-

tion of Eq. 4 with transpose A t and inverse A-I, then for nonslngular

A, the inverse metrics are g_ven by

(gij). (gkm)-i.(AtA)-I.A-I(At)-X.A-X(A-X)t. (22)

When this matrix equation is converted into components, the inverse metric

assumes the form

, (23)

which appears llke an expanded form of Eq. 21. Upon substitution of both

Eq. 23 and Eq. 4 into Eq. 18a, we obtain

(24)
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÷i
after some simplifications. The result is a Cartesian expansion of e

which is a parallel to the expansion of ej in Eq. 4 and which establishes

the connection between Eqs. 21 and 23.

Tensor Products

Wlth the basis of natural tangents •1 , e2,...e n and its dual

÷i ÷2 _n
e ,e ,...,e wlth respect to dot products (Eq. 17), higher order bases of

higher order spaces can be obtained from tensor products of the given bases.

The formation of a higher order space from m existing spaces Wl, W2,...,_Z m

is usually taken to be a Cartesian product W 1 x W2 × ,,, x Wm where points

are given by ordered m-tuples of the form (Wl,W2,...wm) for w k in Wk

and k - 1,2,...,m. The Cartesian product is satisfactory when no algebraic

properties are needed such as when the spaces Wi are Just sets of points.

However, when each W i is a vector space, a product which is also a vector

space is usually needed. The tensor product fulfills this need. It is

defined by the enforcemen6 of llnearlty in each position of the Cartesian

m-tuples so that the new vectors (i.e., tensors) can be added, substracted,

and scaled in the same manner as the original vectors in each W i. To dis-

tlngulsh the tensor product from the Cartesian product, the Cartesian x

shall be replaced by _. The tensor product of the spaces W i is then

+

denotedby wI ® W2 ® "" ® _ witheloments;1 ® w_ ® ... ® wm

which for uniformity of notation also have the symbol _ . For vk in Wk

and a scalar ak, the relatloushlp that defines the tensor product is given

by

w1 ® .®÷ + ÷ ÷•. wk_1 ® (flJk+Vk)® wk+1 ® ® + (25)

..... Wk_1 ® ® ® ®• vk wk+I ....

ii_i!
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b_en the Wi are taken to be spaces of vector fields rather than vector

spaces, the only difference is that the scalars a k of Eq. 25 are func-

tions rather than real numbers since vector flelds are Just an asslgrment

of vectors at all polntsin the space over which they are defined. The

functions a k are given over the space of vector field definition which

if collapsed to a point would be a real number and similarly the vector

fields would reduce to vectors. Now let each Wi be the space of

natural tangent vector fields for

the dual space for J = 1,2,... ,q.

ductspace5 ®"" ® w ®
form

i = 1,2,...,p and let each W. be
3

Then elmnents _ of the tensor pro-

®...® w
q

can be expressed in the

÷ ÷ 1 q
.-ei ®...® ei ® ®...® ,

a = Jl"" Jq 1 p
(2e)

an expansion in the tensor product basis _t1® ... ® _q
which is

il...i
with coefficients a P The Einstein sun_atlon convention for

Jl'" "Jq"

Eq. 26 is used here in the form where all indices can be raised and lowered

by use of the metric (Eq. 20). In particular, blank spaces must exist below

the indices

1,2,...,q.

i k for k = 1,2,...,p and above the indices J£ for Z =
o

As a matter of termlnology, the tensor expression of Eq. 26 is

referred to as a tensor of type (p,q) and rank p+ q to indicate the

numbers of covariant and contravartant basis factors and the total number

of basis factors respectively.

Differentiation of Tensors

To consider the differentiation of tensors, the first step is to con-

sider the differentiation of each factor in the tensor product. Then the
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differentiation process can be extended to expansions of the type given

in Eq. 26 by the enforcement of a Leibnitz rule. The first factor is the

il--.i p
scalar coefficient a where the derivative is already well

Jl-..iq

defined by partial differentiation. In anticipation of the extension to

i
general tensors, the derivative in the y - coordinate direction shall be

denoted by the symbol Di which reduces to the parital derivative _/_yi

on application to functions. When D i is applied to a natural tangent

vector field ej as representative element from the next group of factors,

the result must be another vector fleld. To preserve the basis of natural

tangents, the derivative can be expressed in the form

÷ k _Die j = Fij
(27)

k

where the coefficients Fij in the linear combination are called Chrlstoffel

symbols of the second kind. Alternatively, the derivative can also be

A A

expressed in terms of the Cartesian basis Ul,U2,...,Q n which is constant

for all values of yl,y2,...,yn in correspondence with the domain of

vector field definition. When Di is directly applied to the Cartesian

+

expansion for ej in Eq, 4, only the nonconstant coefficients have non-

trivial derivatives and the result is given by

÷ = ;)2xk

Diej  yJ yl •
(28)

Since the order of partial differentiation is interchangeable,

Die j - Dje t for vector fields on Cartesian spaces. Upon substitution

from Eq. 27 and an application of linear independence, the syunetry property
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k k

rtj = r l i , (29)

Gk " _k GI = 3x _ymGi = 3x

of the Christoffel symbols is valid for all i,J,k. This property can

be extended to non-Euclidian spaces by the definition of a Torsion tensor,

the vanishing of which yields a sl/shcly more complex statment than Eq. 29.

For Euclidian space, vanishing torsion is given precisely by Eq. 29. Con-

sequently, the sy_netrtc lower indices for the Christoffel symbols which

define the derivative of Eq. 27 yields a derivative which Is called torsion-

less.

With the torslonless derivative for Euclldlan space, the Chrlstoffel

symbols can be obtained from Eq. 28 when % is expanded in the basis of

natural tangents. The expansion is obtained from

(30)

where the second equality follows from the inverse relationship for

Jacoblan transformations; the last, from Eq. 4. The substitution into

Eq. 28 then ylelds

÷ 32xk 32xm. .
Diej =

m _ _-'_y i

From Eq. 27 and the linear independence of the natural tangents, the

Chrtstoffel symbols are represented by

(31)

(32)
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which is a representation in terms of both the Cartesian and curvilinear

coordinates. An alternate and more intrinsic representation would be an

expression in terms of the metric as a function of the curvillnear

coordinates. Representations which depend upon some fixed embedding, such

as the Cartesian coordinate frame of reference, could not be considered to

be intrinsic to the space under study. To obtain an intrinsic representa-

tion, the derivative D i given in Eq. 27 will be applied to the metric

expression (Eq. 7) given by the dot product of natural tangents. On appli-

cation, we obtain

-_ -_ -k i_ j= (Diem) • ej + em • (D )

(33)

-  rjrL + ,

where the second equality is aLeibnitz rule; the third, a substitution from

Eq. 27; and the fourth, a substitution from Eq. 7. When i and J are

interchanged and when m and i are interchanged, Eq. 33 respectively is

given by

and

_g_L r r r

_--_= grirjm + gmr Ji

r r

_ym = grjr._ + girrmj "

i

, (34)

(35)

[1 |
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On examination of the right hand sides of Eqs. 33-35, the Christoffel

symbols are observed to appear in pairs: each symbol in the pair belongs

to a different equation and each symbol differs from the other only in the

ordering of its subscripts. When the torslonless condition (Eq. 29) which

is valid for the derivative in Euclldlan spaces is applied, the paired

symbols become identlcal. Consequently, the subtraction of the metric

derivative of Eq. 35 from the s_ of the metric derivatives in Eqs. 33 and

34 collapses by cross cancellatlon into an expression with Just one

Chrlstoffel symbol summation. Interchanging the sides of the expression,

the result is given by

rr = _gmJ +___
2 gmr i J _y:l." _yJ _ym

(36)

_n rr krr k
Since g gmr lJ = _r iJ = rlj' the metric formulation for the Chrlstoffel

symbols becomes

iJ = 2 I_yi _yJ. -_ym J
(37)

With the assumption of a Cartesian frame, the metric formulation collapses

into the earlier Cartesian representation (Eq. 32) by substitutions from

the metric in Eq. 8 and its inverse in Eq. 23. However, the derivative in

Eq. 27 with coefficients from Eq. 37 is not restricted to Euclldlan spaces.

In continuation, the extension of the derivative to the next group of

÷i
factors in Eq. 26 which are the dual vector flelds e to the natural tan-

gents are obtained by an application of the Lelbnltz rule to the duality

relationship of Eq. 17. Since the Kronecker symbol is a constant for any

particular pair of indices, its derivative vanishes and the differentiated
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duality relationship becomes

-t-
O " Di( , ej)

" (D ) ej + e+k r ÷• • (rije r)

- (D ) • ej + .

(38)

where the third equality comes from Eq. 27; the fourth, from duality. When

the derivative of the dual vector field is written in terms of the dual

k _k k_In

basis, there are functions Aij such that Die - Aime . On substitution,

÷ k-_m ÷ k m k
Eq. 38 then becomes -Fikj (Die-k) ej (Aime) ej= .... ^im_1 = All

which determines the derivative coefficients. Consequently, the derivative

-4-

of the dual vector field e_k in the el-dlrectlon which preserves the dual

basis is given by

Djk k "_" -Yije • (39)

With the derivative defined on both covariant (Eq. 27) and contravariant

(Eq. 39) basis vector fields, the extension to a general tensor field (Eq.

26) is obtained dlrectly from a Leibnitz rule. The general tensor fleld of

Eq. 26 can be rewritten in the form

= _ il" "'ip @ Jl'''Jq (40a)

• jl...j q eil...i p e

r] t _-
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where

and

÷

eil...Ip = _i I _''" _ eip , (40b)

Jl"''Jq _Jl _Jqe = ®...® , (4Oc)

are respectively the groups of covariant and contravariant basis factors.

When Dk is applied to the tensor a, the Leibnitz rule is used to obtain

(--_ _ i1" ) ei 1" Jl'''Jq
Dka . _ ..ip _ e

Jl'" "Jq . .ip

il...ip Jl'''Jq

+ a Jl"''Jq (Dkei1"''Ip) _ e (41)

il... ip (DkeJ ..Jq) .
a Jl...Jq eil...ip _ 1"

To evaluate the second term in Eq. 41, the Leibnitz rule is applied again

to yield the factor

P -4- -_

Dkei 1..'.ip = _ ei I _''" _ (Dkeim) _''" _ ÷e_p

p r .
= _ rklm elI ® ... ® _ ®..- ®

A similar application leads to

(42)

÷

•i
P

DkeJl'''Jq _ Jm _1 r= rkrme _ 0 _m_ 0 qasl Qml D (43)
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which appears in the third term. When Eqs. 42 and 43 are inserted into

Eq. 41 and subsequently when r is interchanged (as a dummy index of
m

summation) with the respective indices im and Jm' the derivative

assumes the form

iI. ..i

Dka- (DkU) P
Jl--.Jq eil..-i p

Jl'" "Jq®e (44a)

in the original basis with coefficients given by

il-''i p _ il'"i p

(DkU) Jl'''Jq ayk Jl'''Jq

p i ail...r ...i

_I r m m p "Jq+ krm it""

q rm i I. •.ip

- m-_ rkJm Jl" "'rm'''J

(44b)

As a matter of terminology, the derivative is called the covariant derivative

of the tensor field _ in the direction ek.

The Gradient of a Tensor

In Cartesian coordinates, the gradient of a function

the expression

vf= __/_zQ ,
_xa m

/

is given by

(4S)

and moreover, is a vector field which is normal to the surfaces defined by

constant values of f. To verify the latter statement, consider the

i] | --
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differential tangent vector dx = which at a point _( on a

constant f surface can be viewed as a limit of directed secants

.k-_ .k-t- -b -b

x(P) - x(Q) to the surface as P approaches Q. By direct evaluation

the dot product (Vf) • d_ is Just df which vanishes when f is a

constant and which in turn verifies the statement on the normality of the

gradient. In curvilinear coordinates the gradien t (Eq. 45) becomes

_yl _xm m _yl '
(46)

where the first equality comes from the chain rule; the second, from Eq.

24. As an operator, the gradient can be removed from its application to

functions in Eq. 46 and be given the obvious generalization to tensors

which is

V = _k@ Dk . (47)

In the generalization, the scalar product became a tensor product and

partial derivatives became covariant derivatives (Eq. 44), each being the

extension of the former.

To illustrate the general computation of gradients with Eq. 47, several

useful examples will be considered.

is that of a vector field _ - _ e i-

44, the gradient becomes

The simplest and most connnon example

From the covariant derivative in Eq.

- _ e i
g m F er

(48)
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where the last equality follows by using the metric to lower an index

(Eq. 18a). In fluid mechanics, the next most common tensor is the stress

tensor which is a second rank tensor. Second rank tensors are often called

dyadics. As the final example, the gradient of a dyadic a - aiJ_i®_ j

is then given by

Va - [_aiJ_yk +arj Fikr+air FJkrl_k_ _i _ e_
(49)

from a direct application of Eq. 44, as before.

The Divergence of a Tensor

The divergence operator is a modification of the gradient operator

(Eq. 47) obtained when the tensor product is replaced by a dot product.

In symbols, the divergence V. is given by

÷k
V- - • • Dk • (50)

Upon application to a Cartesian coordinate expression of a vector field

- _iQ i, the easily recognized form

÷ i
V-a..--

_x i '
(51)

i i
is obtained from Eq. 48 where y - x , Christoffel symbols vanish, and

the dot product replacement becomes a Kronecker delta.

To obtain the divergence of a vector field in curvilinear coordinates,

the general expression of Eq. 50 shall be applied to a vector field in the

+

covarlant basis ei of natural tangents. The simplest case occurs when the

iI !!
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vector fleld is a particular natural tangent. For each fixed subscript i,

the divergence is given by

÷ ÷k k_ ÷k J _j rJi6k = _JV" e i - e • D i " • • (F i ) " J lJ " (52)

From Eq. 37, the sum of Chrlstoffel symbols becomes

iJ "_ J_2m -i _yJ _)ym ] _yl
rJ (53)

where the last two sums cancelled upon an interchange of the dummy indices

m and J in the last sum. By Cramer's rule, the inverse metric is given

by gJm . AJm/g where Ajm is the (J,m) _/_-cofactor of the matrix of

metrics (glk). The cofactor Ajm also appears in the expansion by

minors about the jth row whlch is written as g - gjl AIj + ... + gin dnj.

Since its coefficient gJm appears no place else in the expansion, the

cofactor is Just the partlalderivative _g/_gJm" Hence, the inverse metric

can be expressed in the form:

8Jm . 1

g  gjm (54)

When the inverse from Eq. 54 is substituted into Eq. 53, the sum of Chrlstoffel

_)gJm _yi " Sy.l _gg 9y£ "

symbols becomes

(55)

... Consequently, the divergence of the natural tangent field e i is given by
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+ 1 _J
V" ei = j i ' (56)

8y

when Eq. ii is applied to yleld /_g- ±J. Unlike the divergence of Cartesian

bases elements ui' the natural tangents ei have a nontrlvlal divergence

i
unless J is independent of Y • In continuation, to obtain the divergence

of a vector field _ - _i_ i the gradient given in Eq. 48 must be contracted

by replacement of its tensor product with a dot product. The result becomes

\ayk _i _yl

____i + i m

_yl rim '
(57)

where the last equality comes from an interchange of m and i and an

application of the torsionless property (Eq. 29). From Eq. 55, the

Christoffel symbol sum is replaced to yield

i ,

,q '
(58)

which reduces to Eq. 56when aJ = _ for a fixed i.

Similarly, the divergence of the dyadic a - aiJ_i_ j is obtained

from the gradient given in Eq. 49. With the dot product replacement, it

becomes
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!

_)yt r ej ,

(59)

where dummy indices have been interchanged, the torsionless property has

been applied, and Eq. 55 has been used.

The Lapiaclan of a Tensor

When the divergence operator (Eq. 50) is applied to the gradient

(Eq. 47) of some tensor (Eq. 26), the composed operator

A = v - v (60)

which is applied to the tensor is known as the Laplacian, and on surfaces,

as the Laplace-Beltrami operator. It is a simple matter to check (with

Eqs. 45 and 51) that Eq. 60 reduces to the standard Laplacian when Cartesian

coordinates are assumed. To examine the application of Eq. 60, the Laplacian

of a function f shall be co_uted in curvilinear coordinates. From Eq. 46,

the gradient is

ml __L÷
V_ = g _ymel ' (61)
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where the metric was used to lower (Eq. 18a) the index of the basis

vector field. With the vector field coefficients ai taken from Eq. 61,

the divergence obtained in Eq. 58 becomes the Laplacian

(62)

in curvillnear coordinates. Further applications to higher rank tensors

(i.e., rank greater than 0) follows the same pattern and need not be

pursued here.

The Identity Dyadic

The identity is defined to be the tensor which leaves other tensors

unchanged when a dot product on either side is taken. The dyadic

-k

I - e_r_)e r , (63)

is the identity. For notational simplicity, consider the vector field

= • • = a _ier ai = _ and

+. (ai_i) algrl - %I " -___)e r - a - where Eq. 18b was used to

lower the index. For higher rank tensors (Eq. 26) the dot products occur

respectively on the first and last factors in the basis. Since the algebra

is an exact parallel to the vector fie_d case it need not be repeated to

establish that Eq. 63 is the desired identity. By using Eq. 18 to raise

and lower indices, the identity dyadic can also be expressed in the alter-

native forms

I- gri_i® er el®_i g (64)

!:l!
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The Cross Product

In three dimensions, the cross product of the Cartesian unit vectors

is defined by

ui x Gj = iJk_ • (65)

where ¢lJk vanishes when (i,J,k) is not a permutation of (1,2,3) and

is otherwise equal to the sign of the permutation. From Eq. 30 and the

inverse of Eq. 24, the Cartesian unit vectors can be expressed as

_I
_x___ (66)

By substitution into Eq. 65, we have

_ym e_m)

or

x (_-_ _ -
\_Y _xk e

e x e 1

_ym _yr _x k

(67)

by linearity of cross product. When each side of Eq. 67 is multiplied by

(_/_xi)(_yq/_) and summed over i and J, the equation becomes

_}xi _}xj _}xk

or (68)

e_ x _ cPq_ ÷
l 1 e L¢T

-1
from the definition of a determ'tnant applied to A in Eqs. 11 and 22. To

interchange covarlant and contravarlant basis elements, Eq. 18 is applied
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to yield

¢Pq£ ÷ ¢Pq_ ÷k

x ,_ " --eg, --e_i ;j gipSjq _ ×_ gipgjq ¢_- " gipgJqg_k ¢_-
, (69)

which motivates ul to define ¢Pq& as a tensor with indices which can be

raised and lowered with the metric. Then Bq. 69 becomes

where

+ *
elx eJ = /_

¢iJk =-glpgJqgk_¢Pq£ = g ¢lJk from the definition of determinants.

The Curl of a Vector Field

In three dimensions, the curl of a vector field

from the gradient

- aj_ j is obtained

rk j- i
(71)

when the tensor product is replaced by a cross product. To indicate the

replacement, the curl is denoted by V x _. Upon substitution from Eq. 68,

it is given by

(72)

where the Chrtstoffel symbols vanished due to the antisyunetry for i and

J in _iJk and the torsionles8 property (Eq. 29) of symmetric subscripts.

In Eq. 72, the metric can be used to raise the subscript (Eq. 20) should the

vector field have been given initially as _ = after, in addition, it is

a simple matter to check that the curl given in curvilinear coordinates re-

duces to the usual Cartesian expresston when Cartesian coordinates are inserted.
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FORMS FOR THE EQUATIONS OF MOTION

In vector analytic notation, the equations of motion for a viscous

compresslble, heat conducting gas (c.f. [ 3 ]) are given by

+ v. - o . (73a)

_E {E_- T'_} 0 (73b)_-_ + V- KVT+ = .

 ¢pv) + ® ÷v +T}=O , (73c)

where t is time, p is mass density, v is velocity, E is total energy

per unit volume, T - T(p,E,v) is temperature, K is thermal conductivity,

and T is the stress tensor. Respectively, the equations are mathematical

statements for the conservation of mass, energy, and momantumwhere the first

equation (Eq. 73a) is usually called the contlnttlty equation. To complete

the system, the stress tensor is given by

T - (p+_ _V._)I - 2_D , (74)

where p = p(p,E) is the pressure, _ is the viscosity, I is the identity

tensor, and D is the deformation tensorwhich is defined to be the symme-

tric part of the velocity gradlant. Alternative formulatlons arise, for

example when the energy variable is changed or when turbulence is .modeled

either algebraically or with the addition of equations ([ 4] - [i0]). However,

to examine various forms of the equations for computational purposes, it is

sufficient to consider the formulation Just given since the pattern of

operations on other formulations would be the same.
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Contravariant Form

When the Navier-Stokes equations given in Eq. 73 are directly expressed

÷ i÷

in curvilinear coordinates with veloclty v - V e i, the form of the system

i
is called contravariant to indicate the contravariant variables v . With

the contravariant form, the equations are determined entirely by the metric

which can be either depend or not depend upon time. The metric description

is a determination in terms of physlcal distances and angles in the coordinate

system which upon dlscretization for numerical computations translates into

distances and angles for a coordinate mesh. In the case with a time indepen-

dent metric, the vector analytic expressions in curvilinear coordinates are

used directly. The continuity equation (Eq.73a) becomes

+ " o
ayi

(75)

from the divergence formula of Eq. 58 and a multiplication by /g . In the

energy equation, Eq. 46 is applied to yield the temperature gradient

VT - giJ (aT/a_)_ i where Eq. 18a was used to lower the basis index. When

the dot product in the stress term is computed in the covariant basis (Eq.

(TiJ ± ÷ ±126), the product expression becomes T • _ - _ ej) _ (vr_er) - grit v e i-

Then the Sum Of Evl_i, the temperature gradlant term, and the dot product

term is Just the expression under the divergence in the energy equation

(Eq. 73b) and is given by

{Ev i_ giJK a_. + grjTiJvr} e_ .

From the divergence formula of Eq. 58 and a multiplication by

energy equation then becomes

/E, the

(76)
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_yi _ grJ Tijvr
(77)

In contrast to the continuity and energy equations, the divergence of a

dyadic must be computed for the momentum equation. From the llnearlty

properties (Eq. 25) of the tensor product, the dyadic becomes

÷ _ o(vi_ i ej) _i ÷ (ovi _i ÷pv®v+_- )®(_÷ +T lj ®e j= _+T ij) ®ej. When

the formula (Eq. 59) for the divergence of a dyadic is applled, the momen-

tum equation becomes

-- ej
;)t _yl

after a multiplication by /g.

To complete the speci£ication of both the energy and momentum equations,

the stress tensor must be expanded in the covariant tensor product basis to

obtain its coefficients T ij. With the exception of the deformation tensor

D, all parts of the expansion have been obtained previously. The deformation

tensor is defined to be the symmetric part of velocity gradiant which is

obtained by an application of Eq. 48 and which is a dyadic. The dyadic is

written as a llnear comblnatlon of Censor products of vector fields. Each

tensor product of vector fields a ® _ can, however, be decomposed into

a symmetric part _[_ 4_ ]_ + ]_ ® _] and an antimy_atric part

t[_ ® _- ]_ ® _:! by a direct appli_tio_ of the lin_rity properties

(Eq. 25). When the velocity gradient is obtained from Eq. 48 and when the

syw_etrlc part is taken on a term by term basis, the deformation tensor

is given by
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(79)

where the second equality is the result Of an interchange between the dummy

indices of summation i and r. With InterchanEe, the coefficients of the

deformation tensor have s_etrlc indices. In general, when the symmetric

part of any dyadic is taken in the given basis, the symmetry will become

equivalent to a s_etry of indices. 17 particular, the identity dyadic

(Eq. 64) is seen to be sy_netrlc; hence, the stress tensor as a llnear com-

bination (Eq. 74) of sy_n,etrlc tensors is also syn,netrlc. From the identity

in Eq. 64, the divergence formula of Eq. 58, and the deformation tensor in

Eq. 79, the expansion of the stress tensor (Eq. 74) in the tensor product

basis becomes

T " TIr _i@_r , (80a)

where

(8Oh)

When ¢J_e tensor product in Eqo 80a is replaced by a dot product, the trace

of the stress tensor is obtained. From _.q. 7, a Leibnitz rule, and Eq. 55,

the trace :f.s given by

(81)
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where _r sums to 3 and the torslonless property (Eq. 29) has been used.
r

The form of the trace is particularly simple and clearly has a physical

interpretation.

When the stress tensor is to be applied in a numerical calculation,

the form given in Eq. 80 is often not convenient since the solution vari-

ables are not separated in a concise manner. From an application of a

Leibnitz rule and Eq. 55 to the velocity divergence in Eq. 80b and from

Eq. 37 for the Christoffel symbols• the coefficients of the stress tensor

become

Ir = glrp + a_rvk + hlJr _v k
-k _ •

(82a)

where

• (82b)

and

bktJr = D(£1tr_J-gtJ_- rJ&i_,Vk/ •
(82c)

after some algebraic manipulations. The form given here can then be directly

coded into a computer algorithm by the conversion of the sum_ation indices

into computer loops. Moreover• the equations of motion in contravariant

form can be constructed on the computer vlth the stress given in Eq. 82 in a

term by term f•shlon vlth the index conversions. By an exmn_n•tlon of the

equatlons, the construction depends only upon the metric; hence, • general code

cam be made which accepts the smtrlc data as input which is derived from • parti-

cu_ar choice of coordinate systea for • particular problem.
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When time-dependent problems are considered, fixed spatial coordinates

can be used only for cases where the boundaries of the flov region do not

move in time. In cases where the region is rigidly moved such as in a

rotating cascade of airfoils or more generally where the region is also con-

tinually changing shape, the fixed coordinates must be replaced by coordi-

nates which are time-dependent. Relative to a Cartesian space-time frame

QO,...,Gn, the time-dependent coordinates can be expressed in the form

- xi(yO,...,yn)Qi " , (83)

which is an extension of Eq. 2 obtained by the inclusion of time coordinates

0 0
x and y and a corresponding increase in the range of summation i to

go from 0 to the number of spatial dimensions, n. To obtain the contra-

variant form of the equations of motion for the time-dependent coordinates

(Eq. 83), a time-dependent metric formulation must be used. Unlike the

positive definite Cartesian formulation for Euclidian distance given in

Eq. 13, the time-dependent metric comes from the Cartesian formulation for

distance measured in terms of the Lorentz frame from special relativity

([11] - [13]) and is given by

(de)2 c2(dxO)2 _ (dxl)2 _ (dx2)2_ (dx3) 2 , (s4)

where c is the velocity of light in free space. With the metric coefficients

glJ derived from Eq. 84, the continuity and momentum equations can be ob-

rained from a divergenceless stree-energy tensor which is given by

i (85a)

I]I
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where

(85b)

and indices, including su_nation convention indices, all start at 0. Since

the metric derived from Eq. 84 depends upon the velocity of light and since

the velocities in classical mechanics are much less, the Navier-Stokes equa-

tions can be retrieved as an approximation to the equations

v • T = o , (86)

-2
when terms of order c relative to unity are discarded. The approximation

to the 0th equation of the system of Eq. 86 is Just the continuity equation

which has the same form as Eq. 75; the remaining equations are the momentun

equations in the respective coordinate directions. The advantage inherent in

the approximation of the special relativistic equation (Eq. 86) is that the

Navier-Stokes equations are expressed in a manner independent of any space-

time coordinate system and are given a metric structure induced from the

relativistic structure. The metric structure contains the classical Coriolis

and centrifugal force effects in a clean and concise manner. That is, in

addition to spatial changes, the metric contains all of the tJ_ne-dependent

variations of the cooridnate transformtions. The details of the approximation

were presented in McVittie [14] for tnviscid flows and in Walkden [15] for

viscous flows, including an energy equation. _en the equations are fully

expanded with the intent of a direct conversion of indices into a computer

algorithm as in the time independent case, the system of equations contains

a large number of terms. Neither the derivation nor even the expression

[16] shall be reproduced here.



-38-

Differential Forms

When a flow field with shock waves is to be numerically simulated,

a conservation law form for the governing equations (Eq. 73) is often

useful, especially in cases where the mesh is adapted to a shock wave;

for then, the Jump conditions can be satisfied merely by mesh alignments.

Be£ore methods are developed to cast the governing equations into a con-

servation law form, we shall develop the theory of differential forms

which appear in the integral formulation for the conservation of fluid

dynamic quantities. The simplest nontrlvial differential form is given

by the dlfferential df of a function f and is called a differential

1-form or simply a 1-form. In any system of coordinates y, the 1-form

can be expanded to yield

df = _-_--f dy i (87)
_yi

by an application of a chain rule at any given point of the underlying space.

The expansion can also be interpreted as the expression of the 1-form df in

the space of 1-forms which has a basis composed of the coordinate 1-forms

dy l,...,dy n. From another viewpoint, the space of 1-forms is obtained by the

application of an operator d to functions f which can be considered as

O-forms. In continuation, it would then remain to define the operator on

successively higher order forms. At each stage the operator would increase

the order by one, and the result of any application would lie In a space of

differential forms constructed with a sufficient number of products of 1-forms.

The products are known as exterior products and are chosen to model the

orientations of the differential area elements which appear in integration.

Since the needed linearlty properties are already preserved with tensor pro-

duets (Eq. 25)'_ the exterior product is obtained as a modiflcatlon in a

mmner that is s_lar to the construction of tensor p:oducts from cross

F! !
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products°

product ^

with changes in sign.

given by the rule

In partlcular, the tensor product _ is replaced by the exterior

which, in addition, allows the order of factors to be interchanged

For any two vectors _ and _, the interchange is

+ ÷ ÷ (88)
u^vm--v^u p

which is extended to higher order products by successive appllcations.

From the rule, any product with repeated factors must clearly vanish.

Consequently, for a space of dimension n, there can be aC most n

factors since an (n+l)st factor could be expressed as a linear combina-

tion of the flrst n. Moreover, with n llnearity independent factors,

a reordered product would differ from the original by the sign of the

permutation that resulted. An important application of reordered pro-
l

ducts is in the definition of determinants. Suppose Chat a linear trans-

formation is given by z i - A_Wj _or bases Sl,...,z n and Wl,...,w n

related by the matrix (A_). Than, by _Lnearity and by successive appli-

cations of Eq. 88 we have

ZlA .... Zn= 1 WJl n 1 "'" I

(89)

r Jl Jnl * +

= sgn(Jl,...;Jn)[A 1 ...A n _w 1 .... ^ wn ,, det(A7 i) =1^...^ wn÷ ,

where sgn(Jl,...,in ) is the sign of the permutation of Jl""Jn from

the ordering 1,...,n and the last equality comes from the definition of a

deter_nant (c.f. [17], [18]). _'nen f in Eq. 87 is successively taken to

be x 1,... ,x n, there is a linear transformation between the bases of 1-forms.

The relation between volume elements is then obtained from Eq. 89 and is
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given by

dxl dxn (_I yl dyn i dyn
..... = det d ..... = 3 dy ..... (90)

when the coordinate 1-forms dy i are used, the basis for A2E

dyid_ for 1 _ i < J _ n. For uniformity of notation, p

to start at 0 so that ^0E - A and AIE - E.

where J is the Jacobian from Eq. 5 which appears in volume integrals when

coordinates are changed. From the relation, the volume elements are observed

to comprise the one-dimensional space of n-forms. Since the exterior product

with any more than n-factors would vanish, the space of n-forms is also the

last non-trivial space in a sequence of spaces starting with 0-forms. Let

A denote the space of 0-forms which can be taken as the collection of all

infinitely differentiable functions over the underlying n-dimensional space.

Let E denote the n-dlmensional space of 1-forms which can be locally

generated from a basis of coordinate 1-forms dy 1,...,dy n with coefficients

from A. In continuation, let APE denote the space of p-forms which can

be generated from a basis obtained by the formation of all possible p_t de-

gree. exterior products of a basis for E. For example, when p - 2 and

is given by

can be taken

With the spaces of differential forms APE, the differential operator

d :AOE ÷ AlE defined in Eq. 87 can be extended to an operator

d : APE ÷ AP+IE which is valid for p - 0,1,2,... and which satisfies the

conditlonm

iI i!-
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(i) df = _-L-f dyi
_yi

(li) d(a+ 8) = da + d8 for p - q ,

(iii) d (d _) = 0 ,

(91)

(iv) d(a^ B) - d_^B + (-1)Pa^dB ,

for f in AOE, a in APE, and B in AqE.

which operates on the exterior product spaces

The differential operator

APE and is defined by

Eq. 91 is kno_m as the exterior derivative [19]. The motivation for the

definition can be seen from an application in terms of the arbitrary

iI i

coordinates yi where _ = ail...i p dy .... ^ dy p and B = bJl"
OJq

Jl Jq
dy ..... dy • Both (1) and (ll) of Eq. 91 are clear. In (ill) if d

vanishes on dlfferntlals, then

d_ m
8ail...i

p dYk dyii ip...... dy
_yk

and

d(da) - _2al 1. .. ip dyil dylPd; ^ dyk^ ^ ....

J'<-k

(92)

- dyil id; dy k dy p
^ ^ ^ .se ^ |



-42-

which vanishes since the order of differentiation in the second derivatives

is interchangeable. For condition (iv),

.ipbjl" .jq dylld(a^B) " d all..
ip dyJl dyJq)^ ... ^ dy ^ ^ ... ^

I_ail" _bj 1 il Jq= 1"'JR dyk^dy ^ . dy
..ip bJl +ai I. .ip

(_yk ...Jq . _yk '" ^

..ip dyk^ dyil^...,,dylp) ,, (bJl...jqdyJl ..... dyJq )

(93)

il+ dyk^ ail...ipdy [_bJl...jq..... dy ip ^ \ dy jl ..... dy jq )

- d_,,B + (-1)PcL,,dB ,

where the (-I) p is the result of the p interchanges required to bring

iI i
dyk through dy ^ .... dy P. On examination of the applications in terms

of coordinates, it is evident that the chain rule can be used to prove that

the exterior derivative is independent of coordinates. A rigorous discussion

is given by Flenders [19] where, in addition, the exterior derivative is also

presented over surfaces. -

In three-dimenslonal Euclidian space with Cartesian coordinates (xI,

X2,x3), the curl of a vector fleld (AI,A2,A 3) is obtained from the exterior

derivative of the 1-form

a - Aldxl + A2dx2 + A3dx3 , (94a)
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and is given by

dot _x 2 _x ] _--_dx .., dxl+ Z"_'ldx ^dx2.(94b)

Similarly, the divergence is obtained from the exterior derivative of the

2-form

a = AldX 2^dx 3 + A2dx3^dx I + A3dxl^dx 2 , (95a)

and is given by

dol - \_x 1 +_ + _x 31 ^dx2^dx 3
C93b)

In vector analysis, the curl and divergence given in the above form appeared

when boundary integrals were converted to volume integrals by means of

theorems under the names of Green, Divergence, end Stokes. In continuation

with differential forms, there is one theoremwhlch supercedes the vector

analytic versions and is known as the generalized Stokes theorem. For a

p-dlmensional surface M end a (p-1)-form _, the theorem is given by

/ a " / d a , (96)

_M M

where _M is the boundary of M. From the generalized Stokes theorem, the

boundary operator _ is clearly realted to the exterior derivative d.

Since the boundary operator is only applied to surfaces such as M above,

it is an entirely topological operator as opposed to d which operates on

forms. The relationship, however, comes form the existence of a parallel
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theory for _ under an extension that is similar to the development of d.

The parallel theories are of precisely the same form but with different

objects. This remarkable similarity is stated more precisely in the

deRham theorem [19], [20].

Another parallel development of a simpler nature can also be used to

relate differential forms to the covariant and contravarlant basis elements

considered in tensor analysis. In particular, the vector field of natural

+ 4

tangents
ej

to coordinate curves in the y_ variable can be expressed

as the differential operator

ej = _ , (97)

rather than its application to any arbitrary position vector as originally

given in Eq. 3. For coordinates on non-Euclidlan surfaces, the operator

form is essential since position vectors cannot be readily defined. More-

over, any vector field is a first order operator since it is a linear com-

bination of the operators given in Eq. 97. Wlth the vector fields in opera-

tor form, the differential 1-forms can be defined by means of an inner pro-

duct < , >. For any vector field W and any function f, let

In the case when -," yi -oj and f- the inner product becomes

< dyi , _yj > - _yj -_j , (99>

T'] T:
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which is a duallty statement similar to Eq. 17, establishing a parallel

dyl ÷ibetween the l-forms and the contravariant basis elements • .

Conservation Law Form

In a fixed region M of n-dimenslonal Euclidian space a quantity

U is conserved as a function of time if the rate of change of U in

M is equal to the negative sum of the flux _ of quantity U across

the boundary _M. In the language of differential forms the conservation

of U is expressed as

fU®dV - -f o . (zoo)

for an n-form dV as a volume element on M and for some (n-1)-form

which is some function of U that describes the U-flux through _M. If

1 2 n
x ,x ,...x are Cartesian coordinates ordered in such away that

dV = dx I .... ^dx n and is positive, then the flux can be expressed as

n

= _.1(_l)i+_i(u ) ® _I ..... dxi-Z^ dxi+1 .... ^ dxn ,
(loz)

where Fi denotes the flux in the direction x i. When U is a vector

quantity, the functions F i are vectors In the same space and the form

is known as a vector (n-l)-form. As an illustration, conslder the

t_o-dimenslonal case where the flux reduces to the 1-form

- (-1)1+1"F l ® dx 2 + (-1)1+2F 2 ® dx 1

" F l®dx 2 - F 2®dx 1 .

(lo2)
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In Figure 5, a differential volume element is displayed with vertices

A, B, C, and D. In going from A to B, dx 2 - 0 and dx I is positive

which implies that the flux _ - -F2_dx I points in the negative

x2-direcCion for positive components of F2. Along BC, dx I - 0, dx 2

is positive; and hence, the flux _ - Fl_dX 2 points in the positive

xl-dlrection for positive components of FI. In both cases, the flux

is directed out of the volume element when it has positive components.

A similar argument for CD and DA with negative values for dx I and

dx 2 respectively leads to

2
X

= FI ®(_ _2) :

= F2 ® (- dxl)

D [ o

i--t- dx 1

dx 2 dx

• dxl
v

_ = _ 1_2 ® dx 1

_ - Fl_dX2

1
x

Figure 5. The flux through a differential volume element in two-dimensions

U I
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the same conclusion so that positive components of the F i are always

directed outward. With the general flux given in Eq. 101, an application

of the general Stokes Theorem (Eq. 96) to the time conservation of U

stated in Eq. I00 yields

• _x i
M M _M M

(lO3)

where the first equality follows from the time independence of M; the

last, from an application of the exterior derivative in which the factor

(-i) i+l accounted for the required interchanges to retrieve the volume

element dx I ^ ... ^ dxn for each term. By allowing M to be arbitrary,

we obtain

_u _ _Fi_+ --=0
_x i

i'1

(104)

which is referred to as a system of conservation laws expressed in conser-

vation law form. The termonology is clearly reasonable since each flux

F i appears under a derivative in its respective direction _/_x i. An

integration with respect to x i then yields the exact differential dF i

which upon integration over the range of x i reduces to a difference

between boundary values. A nmnber of numerical methods (e.g. [21], [22])

i
are adapted to conservation law forms so that the integration in x for

F i reduces to the same boundary values as in the differential case by means

of a cross cancellation process such as a telescopic collapse of the flux

terRs °
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Conservation Law Form from the Contravarlant Equations

Since the stated governing equations for fluid dynamics (Eq. 73) are

conservation laws for mass, energy, and momentum, it should be possible

to express them in conservation law form for any system of coordinates.

In the contravarlant form with coordinates fixed in time, only the conser-

vation of momentum (Eq. 78) is not in conservation law form (Eq. 104) since

it has terms that are not differentiated. Such terms could be viewed as

source terms in comparison to the remaining terms which appear in conserva-

tion form. The source terms, however, are due to spatially non-constant

natural tangents •i which arise from nonlinear coordinate curves and non-

uniform rates of travel alone coordinate curves even if they are linear.

Otherwise, covarlant derlvatles of the ei would vanish; as a result,

Chrlstoffel symbols would also vanish (Eq. 27); and consequently, the momen-

tum equations would reduce to conservation law form. Wlth nontrlvlal curvl-

linear coordlnates, the nonvanlshlng source terms can be absorbed into a

conservation law form obtained by a natural set of Integratlng factors. To

observe which set 18 natural, the Chrlstoffel symbols in the momentum eq_km--

tlom (Eq. 78) ere replaced by their coordinate expression in gq. 32 to obtain

where o lj - (Oviv j + TiJ)_ for notatlonal simplicity. By e_mination, the

inverse Jacoblan transformation is the natural integrating factor since the

first order part of the Isst tern would be removed and a Leibnitz form would

result for spatial derivatives. The inverse Jacoblan also corresponds with

a change of basis frum the curvilinear directions _j to the Cartesian

directions _. From an application of Eq. 4, the result is given by

] !



-49-

_trom _2xk [

+o o (106)

m

In the last term, the effect of the Kronecker symbol 6 k is to replace

by m. When• in addltlon• the d,..my index r Is replaced by J• the

equation becomes

k

_x m _oiJ

0
• (107)

which, in component form, reduces to the system

(108)

Chat ls in conservation law form.

Conservation Law Form Relative to a Fixed Frame

An alternative method to obtain conservatlon law form for fixed coordl-

nares is to use a flxed frame of reference. As can be noted, derlvatlves of

a fixed frame van/sh, and consequently, ChrlsCoffel symbols can be selectively

removed co yield a conservation law form. In general• the nonconservaClve

terms appear when the dlvergence Is computed for a tensor of rank two or

higher. On examination of the dlversence operator given in Eq. 50• only the

first tensor factor need not be expressed in the fixed frame. Let each co-

variant basis element •i and each contravarlant basis element •_k be

expressed In terms of a flxed frame _i'_2"- "'''_n by the respective linear

combinations el = _i J and " whlch result since............the fixed frame

Is a basls for Rn. Since •+k= gk1_ I = gk!AlJ_; j = AkJ+j, the coefflclents
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are related by Akj - gkIA[_ which implies that the rules for raising

and lowering indices are followed; hence, we are Justified in using the

same sybmol, A, for both covariant and contravariant expressions. When

the last p+q-i factors of the general tensor in Eq. 26 are transformed

into the fixed frame, the tensor is expressed in the form

BIk2"''kprl"''r q
" i(_gk 2...kpr 1...rq

, (109a)

where

Bik2"''kprl'''rq - _ li2"''ip k2...A i kpAJlrI...A jqrq ,(109b)
Jl-..Jq Ai 2 p

for coefficients and

2 ®"" , <109c)2"''kprl'''rq " @''" @ @ _rl q

for the fixed tensor. Since the derivative of the fixed tensor (Eq. I09c)

vanishes, the divergence is an exact parallel to the divergence of a vector

field (Eqs. 52 - 58). In particular, the divergence is given by
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V-a - e • Dm e i _ 2...rq

I _Bik2"''rq Bik2"''rq _ ÷ I 8k2"-- r ej ®
_ym . .rq

I_B k2"''rq m q r j 6_Iik2...r

= (_ym _i + B mi j) 8k2:...rq _

I_Bik2"''rq ik2..

= (_yi + B .rq

_-- _yi
..r

q

(110)

On substitution into expressions for conserved quantities, conservation

law form can be readily obtained, provided that _S is independent of

time and thus can be brought through any existing derivatives with respect

to time. An example is given by a substitution into the momentum equation

(Eq. 73c) to yield the conservation law form

2 i ,k
_yi

(in)

When the fixed frame is chosen to be the basis of natural tangent vectors

to coordinate curves at some fixed point in space, the momentum equation in

Eq. 111 reduces to the form derived by Vinokur [23] for appllcation to each

point on a coordinate mesh. About a mesh point _, the functions A_k ,need

only be applied along coordinate curves,leven though they should exist through-

out the volume element surrounding _. For _ = (pl p2 ...pn), let

÷Qi _ (PI'''''pi+I'yi pi+l,...,pn) be th_ variation only in the yi coordinate

direction for i = 1,2,...,n. Then about _ we have
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_j(_i) k ÷ ÷ ÷- Aj (Qi)ek(P) ,
(112)

k when yi pi.
where Ajk(_i) is a fumction of yi which reduces to _j

i
Along the coordinate curve in the y variable, the covaria_t derivative

in terms of the Ajk by a substitution of Eq. 112 intocan be expressed

its definition as a limit of difference quotients. With the substitution,

the covariant derivative Di of ej is given by

w-

Qi yl pi

_yi

(n3)

When the expression for the covariant derivative in Eq. 27 is evaluated at

and is inserted into Eq. 113, we have

k

k
r_j _yl •

(114)

by linear independence. The point of evaluation _ can be omitted from

gq. 114 since _ can be an arbitrarypoint. In an anticipated n_erical

simulation with Eq. 112, there would be distinct conservation laws (Eq. III)

in correspondance with distinct mesh points. Consequently, such an application

would be better suited to explicit numerical methods in order to avoid

simultaneous multiple representations of the governing equations at each

mesh point.

i I i
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A Conservation Law Form Preservln_ Transformation Rule from Differential Forms

A more direct method to obtain conservation law form for physical con-

servatlon laws is to use differential forms rather than to modify the tensor

form in the previous manners. In addition, to include time variations in

both the solution variables and the coordinates, the flux of Eq. i01 is

replaced by the n-form

)kFk dx° _ ..... (115)= (-1 (U)® ..... _n ,
k=O

0
over (n+l)-dlmenslonal space-tlme where x

slapllclty, the symbol dx1_ " means that dx k

denotes time, and for notational

is deleted from the exterior

product. For an arbitrary region M in space-tlme, the conservation of a

quantity is equivalent to its flux through the boundary _M s,-_tnE up to

zero. From the general Stokes theorem (Eq. 96) we obtain

_M M M =0 _xi] _ dV ,

(116)

and the conservation law form

(llT)

since M was arbitrary. Since differential forms are independent of

coord/nates, the conservation law form in Eq. 117 can be obtained for

different coordinate representations of _ and d_ by a mere application

of the transformation rules for differential forms and exterior derivatives.

When coordinates are changed to yO,yl,...,yn the flux (Eq. 115) becomes
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n )_- _ _-_)_0/_x° _/o_yJ o

/%
...... (_-_ ..... _yJn

(118)

which is in the original form of Eq. 115 but w_th extra indices sunmm-

tion, each of which goes from 0 to n. An application of the exterior

derivative then yields

Id_ - (-i)k _ Fk -- --
Jk "'" Jk

_y _yJ0 _y

/_ Jn
,,, _)xn.I_) dyJk^ dyjO ,^ dy ..... dy

_yJn) ^ ""

Jk "'" Jk
k=0 _y _yJO _y

Jo J
dy ..... dy n

E _) Fk sgn(J O, ..Jn) _xO __ooe

" Jk " Jo Jk
k=O _)y _y _Y

.. _xn /_ dyO^ .... dy n

• in}
_y

(119)

where sEn(Jo,...J n) is the sign of the permutation of Jo,Jl,...,Jn from

the ordering O,l,...,n. To s_mplify the exterior derivative we note that

_x°
"_C_O''"Jn>--_O"'"_--_

_}y _y

-- (120)
*** Jn

_y
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Is Just the cofactor of the matrix (_xm/_y £) at the k_Jz row and Jk _

column for fixed k and Jk" One way to see this fact is to note that

the expression is the determinant of the full (n+ 1) x (n+ 1) matrix

with unity in the (k,Jk)tJl position and zeros for the remaining positions

in the k_ row and Jk _ column. By Cramer's rule [17], the expression

then reduces to (_yJk/_xk)j where J is the Jacobtan, det((_x_/_ym)).

On substitution, Eq. 119 becomes

I ® °_ - _---- Fk
_yJk _xk

which leads to the simple conservation law form

n
..... dy , (121)

L Fk _k
Byi

(122)

where the dtmmy index of summation Jk was replaced by I. If

zm = zm(yO,...,y n) is another transformation but with a Jacoblan

the same derivation leads to the conservation law form

H, than

_zm _x k _yl '

(123)

which reduces to

IFk -- (JH) = 0 ,
_}zm _k

(124)

where JH is the Jacoblan of the composed transformation. Thus, as would

be expected from the coordinate invariant formulations from differential



-56-

forms, the result is a transformation rule which preserves conservation

law form. From another point of v_ew, Eq. 122 can also be derived dlrectly

from manlpulatlons with calculus on a case by case basis. One example is

i
given in Vivland [24] where Eq. 122 was derived in two-dlmenslons with x

as Cartesian coordinates and yl as curvillnear coordinates. Wlth the

coordinate invarlant formulation in terms of dlfferentlal forms and the

resulting transformation rule, the remaining question is whether or not

conservation laws exist in a given system. This topic has been examined

by Eise_-m and Stone [25] - [27] for both local and global conservation

in spaces which can be more general than Euclidian spaces.

Frame Field Formulations

In a collective sense, a basis of vector fields is referred to as a

frame fleld. For curvillnear coordinates, the fundamental frame field is

the basis of natural tangents (Eq. 3) to coordinate curves since It deter,dnes

the coordlnate metric (Eq. 7). As the frame fleld which contains the basic

metric information for the coordinates, we shall call it the coordinate frame.

When curvillnear coordinates are used to obtain a discrete mesh for the numerl-

ca1 slmulatlo_ of a flow fleld, the coordinate frame is also the frame which

is properly aligned with the discretlzatlon. Consequently, ln a discrete

analysis, any other frame flelds would have to be related to the coordinate

frame. From this vantage point, the contravarlant formulation would then be

the most natural one to select since the coordinate frame is used for the

velocity vector, the derivative directions, and the stress tensor. In the

course of a numerical solution, however, the Eeometrlc properties of the

coordinate mesh may not bear any relation to the physical properties of the

i
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flow. For example, if a mesh for a constant uniform flow is chosen to

be rectillnear, to be allgned with the flow, and to expand in the flow

direction, then the natural tangents would also expand in length. As a

result, a trlvlal flow field (_ - const.) is computed with nontrlvlal

varlables (vi). If, in addition, the coordinates were curved and not

aligned with the flow, then the example would be even more complicated.

In the example of uniform or locally uniform flow, the errors are clearly

caused by the mesh geometry in the given region. To minimize the errors

due to such an inconsistency between the geometric properties of the mesh

and the physical properties of the flow, frame fields other than the

coordinate frame should be used. In the case with the rectilinear mesh

that expanded in the direction of alignment with a uniform flow, the

coordinate frame can be replaced by a normalized coordinate frame in the

equations of motion. The normalized frame is given by the unit vector

÷ -- i
flelds ei//gll for each coordinate direction y . Relative to the

frame, the velocity field is given by solution components which are actual

velocity magnitudes in the respective coordinate directions• Since dis-

crete representations of derivatives will vanish for constants, the uniform

flow field will then be reproduced without an error from the uesh geometry.

In the more complex case where a fully curvillnear mesh is used, the

noraalLsation of the coordinate frame, however, will not re_ve the seome-

trle error from the smsk. To remove the |eomtric error, tha velocity

should be expanded relative to an orthonoraal _ frame where one of its

constituent vector fields is aligned w/th. the uniform flow. As before,

the velot/Cy coefficients then become _actual velocity magn£tudee 4. the,

respeetlve dlx_ectloas as_d the .... ,. - , _ - -'.: ,;
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uniform flow is again retrieved. In flows past isolated airfoils, the

flow approaches uniformity away from the airfoil. For moderate angle of

attack, the approach can be rather rapid. Consequently, the orthonormal

frame for velocity components can be expected to yield accurate results.

Numerical evidence ([28] - [29]) supports the expectations. In the

numerical studies, the choice of orthonormal frame was referred to as

the application of Cartesian directions since only a Cartesian coordinate

dlscription of velocity was used. Form the more general viewpoint, the

frame field formulation was introduced in [30] and the previous Cartesian

frame was called a particular case of a solution frame since the velocity

or momentum components are solution variables and since more general frame

fields are needed for alignment with flows which undergo a change in

direction. Such directional changes conunonly occur with cascades of com-

pressor or turbine blades. Within the context of frame fields [30], there

are also derivative and approximation frames. In a number of special cases,

a frame field has been selected to alien solution variables, derivatives, or

equations with a given direction of interest. In Jameson's [31] generaliza-

tion of the type-dependent differencing due to Human and Cole [32], a speci-

fic dertvativ_ frme m maployed. This frame, known as the Frenet frame [1],

consisted of vector fields that are tangent, normal, and binormal to the stream-

lines. The result was called the "rotated difference molecule". This same

fr_ was also used for both a derivative and a solution frame by Laksh_na-

raya_a and Horlock [33]-[34] who applied it to the vorti¢ity equation (for

both statlom_ and r0_at/nS systems)_ Their analysis consisted of successive

application of dot1_teduet8 and dlfferantSatlon rules for the frame fleld;

the dLU_felqmtta&iem_l_t_ao, comktsted of tim Freuet formulas al_cqp vith

il I '-
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other formulas for the normal and binorual dlrectlons. The results were

a sequence of interesting genera]:tzattons of the previous formulJttoua

for eecondacy flow.

To Illustrate the application of frame fields for the numerical simu-

lation of turboemchtnery flow fields, a two-dimensional cascade of turbine

blades, depicted in Figure 6, shall be considered.

i o . ..... r ._

1
DIRECTION

D

/ •

Figure 6: A Typical Cascade of Turbine Blades

In the figure, a camber curve, denoted by the dotted curve, tm illustrated

as an extension of the turbine blade camber line into both upstreamand

downstream directions as a smooch curve. In a parallel to the case with

isolated atr£otls, the cascade flow field directions should be roughly

aligned with the camber curve tangent for each given x 1 location.
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Consequently, the field of orthonormal frames consisting of unit normals

and tangents to the camber curve can be expected to increase the accuracy

of a numerical flow field simulation. If the camber curve is given in the

form x2 - h(x I) for some function h, then the unit tangent and normal

are given by

+dh ^ I
fl(xl)" Alal _i u21

, (125a)

and

I dh ,, I_2<_1) = A "'_-T ul+a2 I '
(125b)

respectively for all x2 values and for the normalization factor

1+ dh "2'h-,} • (125c)

Of the two possible choices for the normal vector (Eq. 125b) corresponding

to the two sides of the camber curve h, the upward pointing one was

selected as can be observed from the positive contribution in the _2

direction. In the compact summation convention notation, the frame field

= fk_attached to the camber curve can be written in the form fm mUk where

k
the coefficients fm are taken from Eq. 125. To relate the frame field

to the coordinate frame, Eq. 30 is applied to yield

- .fm m (126)

ilIi
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The inverse expression is obtained from the inverse Qi " B_fk to Eq. 125

1 2
where the coefficients are found by Cramer's rule to be B1 = B2 = 1 and

B21 = _B 12 = dh/dx 1. From an application of the successive inverse

(_xl/_yr)B_ to Eq. 126, we obtain

÷ _x i m

er = -- Bi fm
_yr

(127)

by use of the inverse relatlonshlps Bmf k ki m " _i and (_xl/_yr)(_/_xi) - _ .

With the transformation rule for the frames given by Eqs. 126 and 127, there

is also a transformation for the velocity components in each frame. The

÷ r+ for conCravarlant components v r and byvelocity is 81ven by v - v e r

m
= Wmfm for camber frame components w . A substitution from Eq. 127

then leads to

(128a)

by linear independence; a substitution from Eq. 126, to

- wmf k

m _k "
(128b)

By successive applications of Eq. 128b, the velocity components in the contra-

variant form of the equations of motion can be expressed in camber frame

m
components w which are roughly aligned with the flow by construction.

Since the solution variables are coefficients relative to the camber frame,

the camber frame is being used as a solutlonframe in the resultant expressions.

To convert back to the coordinate frame, successive appllcatlons of Eq. 128a
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would be required. In the above case, only the solution varlables are

given relative to the camber frame; the derlvatlves, however, are still

in the coordinate frame as can be observed from the operator form of the

natural tangents (Eq. 97). The derivative frame can also be changed to

the camber frame or any other convenient frame. When the change is into

the camber frame, Eq. 127 is converted into the operator form

, (129)

where zm are local coordinates about any fixed point which has the

camber frame as its coordinate frame. By substitutions from Eq. 129,

all derivatives can be expressed in camber frame directions in all possible

equations. When the substitutions are made, a conservation law form

2%
, (130)

is preserved only when the conservation law preserving transformation

rule (Eq. 122) is applled to yield

3zi Gk ayk
(131a)

whe re

H = det = dec ;)xk
• (131b)

the last equality of which comes form the operator form of Eq. 126. When

"the transformation rule is originally applied to preserve conservation law

ii T| V
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i
form (Eq. 117) for a change from Cartesian coordinates x

linear coordinates ;, the fluxes in Eq. 130 are given by

Into curvt-

(132a)

where

(132b)

from an observation of Eq. 122. On substitution, the conservjatlon law

form then becomes

"°'
9z i 5 _xJ J_yk i

t

(133)

or

L{_.,. 5_ -o .
(134)

A siapltficaeton can be obtained from the produce rule for determ£nants

which on applicaelon to the produce £n Eq_ 134yields;

JH = dec m

where the last equaltey follows from gq. 125. From the operator form of

t
Eq. 127, the derivative of z in Eq. 133 is glven by

(136)
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with a change of indices. By substitution

_z i _ _z_i _yk _x___rBi _rBi i

_x--_,_ _yk" _ _yk r " J r " B_ .

When the expressions from Eqs. 135 and 137 are inserted into Eq. 134,

the conservative form reduces to

(137)

_--!zsJl
_zit J i_ " 0 , (138)

i
where the derivative with respect to z is related to the operator form

of Eq. 126 which, for completeness, is given by

L k _ymL- kL

_zi " fl _xk _ym fi _xk '
(139)

: with an interchange of the d,-m-y indices i and m for the first equality

and an application of the chain rule for the second. On examination of

Eqs. 138 and 139, the conservation law form preserving transformation rule of

Eq. 122 could have been established for frame fields and applied directly.

In the case Just considered, the transformation between two orthonormal

frames had a determinant of unity (Eq. 135), as could be expected for such

transformations which are either Just ivolutlons or rotations.

i!!
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The Approximation Frame

In addition to the solution and delrvatlve frames, an approximation

frame has been derived [30] to unt£y the class of unidirectional flow

approx_nations which lead to spatial marcht_g algorithms for the Navier-

Stokes equations. The class of approx_ations had developed over the

past decade [3S] - [47] as a means to study three-dt_ensional steady-

state flows (incompressible, compressible, subsonic supersonic, etc.)

In cases where the £1ow was assumed to be unidirectional. A motivation

for this assumption was derived from the experiment_lly observable fact

that without abrupt changes in geometry a high Reynolds number flow is

dominated by only upstream conditions. Here, enroll disturbances in the

primary direction tend to decay quickly. Consequently, a suitable approxi-

mation can and has been assumed to produce a well-posed system of govern-

ing equations from which a step_lse integration can successfully be applied

to a given set o£ initial conditions. The rate o£ success with numerical

computations tends to support this ass_ption. As in boundary layer

theory, the approx_mtion8 prior to the approximation £rsme were obtained

by an exa_natton o£ the relative order o£ magnitude o£ each term on an

equation by equation basis. Unlike boundary layer theory, these estimates

only neglected the difgusive flux in the assumed primary direction. The

net rest_lt was that the approximate governing equations contained the in-

formation which was necessary to accurately model secondary glow phenomena.

In addition the approximations, although similar in concept, were each

diggerent; the pr_nary dtgferences came from the chosen system o£ conserva-

tion la_s (e.g., the transport o£ nement_, vorttcity, energy, etc.) end

£rom the geometric properties associnted with each particular problez.



-66-

These differences also pointed to the fact that each of the order of

magnitude approximations were too specialized to obtain an approximation

which was valid for all cases where a primary flow direction exists.

The physical properties, associated with a primary flow direction,

depend upon the fundamental constitutive relationship of a fluld. For

this reason, the approximation presented in [30] was a direct approxima-

tion of the stress tensor which was clearly a statement about the constl-

tutlon of the fluid. Consequently, such an approximation is independent

of the choice of basic conservation laws governing transport phenomena.

Moreover, the approximation is performed in a manner which preserves the

tensor character of the stress. Consequently, the approximation is also

independent of coordinates. _n this manner, the llm/tatlons of the order

of magnitude approximations are overcome. With the added 8enerallty, it

should be noted that some terms of neglIsible size are retained. However,

benefits from the added 8enerallty can out_elgh by far the expense of in-

eluding these terms. Such benefits are reflected in the wider range of

applicability for a spec[flc alsorlthm and in the quallty of an approxima-

tion which can easily be increased because of the added flexlbillty.

To sultably approximate the stress tensor, only the viscous part will

be considered since it is the diffusive fluxes which are to be approximated.

For subsonlc cases, the renaining part of the stress tensor (the pressure

field) must be treated carefully. This includes cases where there are both

subsonle and supersonic regions. On the vlscous stress, the approximation

frame is used to determine which part8 are to be removed; hence, which parts

should contribute little to a flow with an assumed primary direction. To

start the construction, this direction is assumed to be given in the form of
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of a vector field _3 which identifies a primary direction at each spatial

point. Then _3 can be extended to an orthogonal triple of vectors _1' a2'

_3 to form a frame at each spatial point. This extension must be accomplished

in a smooth enough fashion over the whole flow field so that at least one

continuous derivative can be taken. The required differentiabiltty occurs

because of the requirement to differentiate the components of the stress

tensor as they would occur in the conservation laws for momentum, vorticlty,

or energy. From the construction, a smooth field of or thogonal frames is

+

obtained such that _3 is aligned with the assumed primary flow direction

and Ul' _2 span orthogonal transverse planes. Altogether, this is the

desired approx/mation frame in whlch a dlfferentlal viscous stress cube can

be formed at each spatial point. An Illustration is given in Figure 7 where

the tensor components _J - o ij at_aj are displayed for the viscous

part of the stress tensor _ which is given by

a - alj ® aj (14o)

in the approximation frame tensor product basis. The resulting components

of viscous stress on a cube surface are elther allEned wlth or are ortho-

gonal to the primary direction. Consequently, the force balances represented

by the Navier-Stokes equations are effectively separated into three mutually

exclusive directions so that approximations in any given direction do not

directly affect other directions. That is, a force in any one of the direc-

tions does not project nontrtwlally onto the other two remaining directions.

If the equations of motionwere written for the isolated cube, then the stress

components would only contribute to the force balance in their respective
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PRINCIPLE

-b.

Approxlmatlon - _31 . 0 for i - 1, 2, 3

ir-_-l l l l l l l l _

FIBER -LIKE
OBJECT

Figure 7. Viscous Stress Cube. The resulting_ tensor is non-synnnetric

and the effective differential element is a fiber-like object.

!_! I !
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-k

directions. However, in the primary direction _3' the viscous contr£-

bution o 33 is expected to add little to the strong convective forces;

hence, this contribution is ignored, and as a result, the a3-direction

momentum balance is not elliptic in character. In addition, for the _l
-k

and _2 directions the contribution of the viscous shearing stresses ....

o 31 and 032 are also small relative to convective forces; hence, they

also are ignored, and as a result, the respective momentum balances each

are not elliptic in character. By contrast, the symmetric counterparts

013 and 023 each add to the force balance in the primary direction, and

since they are the primary mechanism for the viscous retardation of the

flow they are significant; hence, they cannot be neglected. Due to the

orthogonality of the approximation frame, the force balances are mutually

exclusive. Moreover, by Joining existing cubes along transverse faces,

effectively longer and longer viscous stress cubes can be formed. On a

differential level, this is possible since the total assumption is that

viscous forces on transverse faces are negligible. As a conceptual device,

these forces can be considered on a fiberlike object which is aligned with

the assumed primary direction. From this vievpoint, only internal viscous

forces _rlthin the fiber are neglected. That is, the fiber has no stiffness;

therefore, the only balance against the convective forces is due to the

shearing stress along its boundary. This is particularly appropriate when

the fiber is in the boundary layer since a no-slip condition causes the

fluid to decelerate from viscous forces and come to rest at the walls (see

Fig. 7).

In the approx-lnmtion frame, the approxinmtton of the viscous part of

the stress tensor is given by the assumption that the components o 3j are
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negligible relative to the convective forces for J - 1,2,3. When the

assumption is applied, the approximate stress tensor _ is expressed

by

"" -3- lJ "" ÷
(141)

Unlike the original viscous stress (Eq. 140), the approximation (Eq. 141)

is not sy_netrlc, as could be expected from the directional bi_..When

the approximate stress is used in place of the original stress, unldlrec-

tlonal viscous approximations are obtained for the conservation of momentum,

energy, and vortlcity. A unldlrectlonal system of governing equations,

obtained from the approx/mate stress, Is not elllptlc and can be solved

by a forward marching procedure. In cases involving subsonic flow, the

elliptic character which has been removed must be replaced. The replacement

can be in the form of viscous perturbation pressure field for a known marching

direction pressure gradient (_.g. [39]) or in the form of an Iteratlve cycle

where a simple elliptic potential equation is solved by some efficient

elllptlc solver and the vlscou_ un/directlonal equations are spatially

marched (e4. [42], [43]). In the latter case, the velocity is split into

rotational and irrotational parts and the pressure is defined solely in

terms of the irrotational part. In the former case, the known pressure

gradlent is often taken from secondary flow theory [33] - [34].

Before the approximation as presented in Eq. 141 can be applied, it

wast be put into a form whlch is consistent with the chosen system of conserva-

tion laws governing the transport phenomena. Within the conservation laws,

the stress tensor is usually expressed in component form where the components
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are the coefficients of the stress in a tensor product bem£s determined

_l' _2' _3" This frame fiela vould probably be theby frame fieldsome

solution frame to be co_atible with other parts of the momentum balance.

To achieve the desired consistency, the stress components must be taken

from the B-frame, transformed into the a-frame, approximated in the

a-frame by Eq. 141, and then transformed back into the B-frmae so that

the results can be used. For notation, let wij be the coefficients of

• ÷ i

the viscous part of the stress tensor in the B-frame, let aj = Yj_• i

be the transformation into the _-frmne, and let _£ = C_ be the in-

verse transformation back into the B-frame. With the given notation, the

transformation into the a-frame is given by

, (142)

from the linearity properties of the tensor product (Eq. 25). An applica-

tion of the approximation from Eq. 141 with _iJ= wk_ then yields

(143)

When the transformationback into the B-frame is applied, the approximate

stress becomes

2 r

.
i=l

(144)
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An illustratlon of the approximation procedure is given in Figure 8 where

the basic approximation is seen to be performed in a llfted space.

w _i ® aj

k
Gi%

.

!

APPROXIMAT:ON FRAME

3 kmiJ÷

FRAME FOR CONSERVATION LAWS

• _ GkFHJ'W :r _ ]_S

Fisure 8. The Unidirectional Approximation to the Viscous Stress

The coefficient from the last equality in Eq. 144 is the viscous stress

approximation in a fom that can be directly inserted into a governing

system of fluid dynam£c equations to obtain a unidirectional approximation.

For example, if the _frame is Just the coordfnate frame, then the uni-

directional approximation to the coQtravariant conservative form of the

Ioue.tua equation (Eq. 108) is given by

(145)

ilI!
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for a suitable choice of vector field ct3 that defines the primary flov

direction.

Several applications of the approximation can be mentioned. In each

case the central part is the selection of a vector field vhlch adequately

defines a primary flow direction. Since the most accurate approx_aatlon

would result from the velocity field itself, this is a natural selection.

One procedure would be to directly use the Frenet frame for the streamlines.

This is also the closest approach to the secondary flow equations as pre-

sented by Lakshminarayana and Horlock [33]. However, the Frenet frame is

not always well-defined. Certainly problems would arise when the stream-

lines inflect or have local regions of uniform flow. Each of these possibi-

lities would cause the Frenet frame to suddenly change orientation or lose

the distinction between unique normal and binormal directions. As a result,

the desired continuity of the frame would be lost in such cases. Conse-

quently, a preferable method would be to use the velocity field and to con-

struct a differentiable orthogonal frame around it. This could be chosen

to coincide with the Frent frame in certain regions. Alternatively, the

priamry direction vector field could be selected as some approximation to the

viscous velocity field. For example, the directions from an inv_scid poten-

tial flow solution could be used. Often the potential flow directions are

Just the tangent vectors to the steamline family of coordinate curves in a

potential flow coordinate system. Moreover, other primary directions can be

selected as tangent vectors to some given family of coordinate curves in some

other system of coordinates. When this is done_ the approximation is indepen-

dent of the rema/ning directions. In particular, a transverse face of the

stress cube is not aligned with the tangent plane to the transver6e coordinate



directions, unless the system is orthogonal. Since only one family of

coordinate curves could be used, a more general approach would be to

generate a suitable family of curves that are aligned or approximately

aligned with the flow direction. When vertically translated versions of

the camber curve (Fig. 6) are considered, an approximate alignment is

obtained for cascade flow fields when they are viewed as channel flows

with a third slab syn,netrlc dimension. In the cascade example, the approxi-

mation frame would be given by

Ul " f2 ' (146)

a2" i x 2 '

where fl and f2 are given in Eq. 125 and _3

flow direction.

is the approximate primary

NUMERICAL METHODS

Overview

When the form of the governing fluid dynamic equations is selected for

a given problem, the next step in the process of numerical flow field simula-

tion is to select a suitable numerlcalmethod which in turn may depend upon

the form of the equations. The choices that are available extend over a broad

range. There are explicit and impllclt finite difference methods, finite

element [48] and finite volume ([49] - [53]) methods, collocation plecewise

rlIi
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polynomial methods ([54] - [56]), spectral collocation and Galerkln

methods [57], box [58]and higher order box [59] methods, operator

compact implicit methods [60], flux corrected transport methods ([61] -

[63], monotone methods ([64] - [65]), random choice methods ([66] - [67])

type-dependent methods ([31], [32], [51]), artificial compressibility methods

([68]- [69]) inflation and continuation methods ([70], [71]), approximate equa-

tion coefficient methods wlth locally exact solutions ([72]- [73]), adaptive

methods wlth and without a fixed number of mesh points ([74]- [82]), multl-grld

methods ([83]- [89]), asymptotic methods ([90]- [92]) and other methods which

are usually variants or combinations (e.g. [93]- [95]) of the methods listed.

For general references, a survey of many of the methods can be obtained from

an examination of the recent proceedings for the AIAA Computational Fluid Dyna-

mics Conferences, the International Conferences on Numerical Her,hods in Fluid

Dynamics, and the von Karman Institute Short Courses on Computational Flmld

Dynamics.

Rather than a comparative preseatatlon of the various methods, our

discussion will be limited to a specific class of techniques which are use-

ful for many of the turbomachinery problems where Hach number ranges usually

extend only Into the low supersonic region. Turbomachinery flow fields,

as internal flows, are non-trivially bounded above and below by solid

objects. Specifically, for cascades of airfoils, the flow region is

multi-connected which is more complex than the channel flows which are

sometimes used as an approximation to avoid leading and trailing edge

analyses for each airfoil or blade shape. Along the solid-boundaries for

the internal floe problems of turbomachinery, no-slip boundary conditions

must be applied whenever a numerical simulation of a viscous flow field is

attempted. As a consequence, there is a singular perturbation problem for
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the boundary layer which is especially acute for high Reynolds number flow.

When the flow region is discretized, the boundary layer must be resolved

with a finely spaced mesh, for otherwise, accuracy is lost. The finely

spaced mesh, however, causes the CFL stability limit for explicit finite

difference methods to be overly restrictive on the permlssable time-steps.

Such a restriction is particularly troublesome when time-dependent equations

are solved with the intent of converging upon the steady state flow fleld

as rapidly as possible. The time-step restriction means that the steady

state solution can only be obtained from a large number of tlme-steps

which implles that a large amount of computation must be done. Vector

computers, however, are most efficient with explicit numerical methods, can

rapidly perform a large number of computations, and thus, would tend to

offset to some degree the effect of the stability restricted time-step. In

addition, the development of multigrid techniques would be helpful since

the aggregate amount of computational work would be limited by shifting to

coarser grids when finer grids would not substantially improve the solution.

The saved work comes from the use of a sequence of coarse grids which have

substantially smaller numbers of mesh points on which computations are

executed. Most successful appllcatlons of the multlgrid methods, however,

have been in cases where the gr_d sequence is composed of Cartesian grids.

Such a sequence can be used for curved boundaries when boundary interpola-

tions are applied to local coordinates. To avoid the complex organization

and manipulation of the data, a sequence of grids derived from curvillnear

coordinates would be helpful. Some successful results have been obtained

[89], however, the general combination of multlgrld methods and curvilinear

coordinates needs further development. For the complex geometric
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configurations which occur in turbomachinery problems, the application

of curvtlinear coordinates is essential to obtain a veil-ordered numerical

alsorithm which can match the geometry and the solution gradients. To

avoid the explicit stability restriction, implicit methods were developed.

With implicit methods, the numerical solution can be stably computed for

a much larser time-step at a price of more computation and storage per

step. When an alternating-direction-implicit (ADZ) splitting is applied,

computational efgiciency per step is increased beyond that _or a pure

implicit method. Relative to explicit methods, the ADI methods will more

rapidly converge to a steady state flow £ield. Consequently, our dis-

cusston will primarily be centered upon ADI methods. Since the motion of

a viscous fluid is described by nonlinear equations, a key part o£ an

implicit method is the treatment of the nonlinear properties o£ the equa-

tions. The earliest treatments involved an iteration cycle which was

costly. Later, Lindenmth and Killeeni [96] discovered that temporal accuracy

did not deteriorate with a ltnearizatton, and consequently, they devised

a non-iterative algorithm. Subsequently, the non-iterative technique

was applied by Briley and_McDonald [97], was mathematically analyzed and

extended by Beam and Warmi_ ([22], [98], [99]), and was applied to isolated

airfoil problems by Steger [29]. In addition, HacCormack included an

implicit step to devime a rapid eolverl[100] and Ballhaus, Jameson, and

Albert [101] and Holet [102] each considered extensions to transonic glow.

The General Initial Value Form

All of the initial value formulations for viscous gas dynm_c problems

can be written in the general form
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_---" Fi , (147a)

where t is a time or time-like variable (as in spatlal maching techniques)

and where Hi and Fi independently depend on t, the spatlal coordinates,

the solution vector, and derlva_ives of the solution vector. In a compact

notation, the functional dependence is given by

H i - Hi(T,_,p k)

F i - Fi(T,_,pkr ) (147%)

T=t

where the indices J,k are assmned to vary over their respective ranges

and where r is assumed to be the multi-index (rl,r2,...,rn) which

corresponds to

k.[ • • _ n

Pr / "
k

u , (147c)

k
" 0 andfor the solution variable u when r I - r 2 - ... - r n

(rl+ r2+ ... + rn)_ order derivatives when one or more of the indices

rj _0 is strictly positive. In anticipation of chain rule expansions,

the partial derivative of Eq. 147c with respect to a solution varlable um

Is gtven by the differential operator

k r

• (148)

:TI!_-
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To see how this occurs, the tt_e-lik_ derivative og Eq. 147c is directly

computedto be

_Pr """ _ n uk = """_T'_ 1 n 1
_)y / _)y / _k_}yn/

r k

"'" _t _um _t

(149)

where the second equality is due to an interchange of the order of differen-

tiation; the third, the deftni_on of the Kronecker delta; and the fourth,

the operator from Eq. 148. Unlike most forms of the chain rule, the order

of the factors in the result of Eq. 149 is important since the operator of

Eq. 148 must be applied to the second factor for each m as m is sunned

over its range.

From the chain rule, the general system of Eq. 147 can be rewritten so

that the time or time-like derivative is expZtcitly applied to the solution

m
variables u . In the explicit form, the system becomes

_Si _um _Hi

= F , (_Oa)

where

k
_Hi 9Hi _Pr

aa

_um _Pr

(150b)
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is the Jacoblan of operators and where the partial derivative of Hi

with respect to t comes from the t-dependent solution independent

parameters that, for example, can arise from t-dependent geometry. If

the Jacoblan is nonslngular as a linear transformation, then the time-

llke derivatives of the entire solution vector can be obtained by a

direct solution. Otherwise, a constrained system of lower rank must

be considered. Under a change of basis, the explicit form of Eq. 150

can often be rewritten in an equivalent form where the Jacoblan (Eq.

150b) is represented by an operator matrix with M llnearly independent

rows and N-M rows of zeros where M is the rank of the Jacoblan and

N is the total number of rows (and columns). The last N-M rows of

transformed equations correspond to the nullity of the Jacoblan and

hence involve no time-llke derivatives. Consequently, the last N-M

rows are viewed as a set of constraints which can be used to eliminate

the last N-M components of the solution vector in the first M equations.

The constraints are in the form of Eq. i50a with a vanishing left hand

side. When the equivalent form exists with constraints, the original

system of N equations in N unknowns has been reduced to another equi-

valent system of M equations in M unknowns. Such an original system

can be called a reducible system in correspondence with the matrlx terml-

nology [103] which is a direct parallel since a dlscretlzatlon of the system

would lead to reducible matrices. If the system is reducible at each point

(t,yl,...,yn) by a sufflclently smooth basis transformation, then the

system can be called a solvable system. Only solvable systems shall be

considered; moreover, without loss of generality, we can assume that the

Jacoblan (Eq. 150b) is nonslngular, for otherwise, the reduced system would
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Just produce a smaller equivalent system that is nonslngular and could

be solved in the sRme manner. With the assumption of solvabillty, an

inversion then yields

, (151)

where the matrix (Aki) is the inverse Jacobian and the notation Dk

is introduced to denote the value of the t-derlvatlve of the k/k solu-

tion vector component that is directly determined by the system of partial

differential equations.

Linearization in the Time-like Variable

When the system of partial differential equations (Eq. 147) is to

be solved by a non-iterat_ve numerical method, the equations must be

linearlzed in some fashion. Moreover, on examlnation of various linearlza-

tion strategies, corresponding numerical methods can be derived by direct

integration and by finite differences to yield both implicit and explicit

algorithms. To simplify the notation in our exam/natlon of llnearlzatlon,

at least i_ttlally, consider the scalar ordinary differential equation

du = f(u) , (152)
dt

where the only possible nonlinearit7 occurs in f and where a solution

u(t) is desired when un = u(t n) is given and t > t n. From the first

terms of the Taylor series expansion of f, Eq. 152 can be approximated

by
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dt! en _ (t-t n) = fn + Tun n
(153)

where the subscripts n denote evaluations at tn, and the error of

approximation is of order (t- tn )2. When the derivative of u at n

is expanded in the forward difference form

(d) u - %n" _ _n+ O((t-tn))
, (154)

and second order terms in (t- tn) are neglected, we obtain the implicit

approximation

du f + /df_
d-_= n _/n_u (u- un) , (155)

which still deviates from Eq. 152 by only second order terms. If, in

addition, the remaining derivative of u were to be replaced by the back-

ward difference (U-Un)/(t- tn), then the resultant equation would be ob-

served from Eq. 154 to deviate from Eq. 152 by first order rather than

second order terms. However, without a decrease in accuracy, a direct inte-

gration of the implicit linearlzation of Eq. 155 is always possible and the

result is given by

A(t- tn) j_If nu=b+ -1 ,

where (156)
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Moreover, in the special case when f is linear, the solution is also

the exact solution of the original equation (Eq. 152). The special

llnear case is also easily seen to include constant coefficient linear

systems by a parallel development. In the general nonlinear cases, the

exponential character is clearly contained in the Integral (Eq. 156) of

the impliclt llnearlzatlon and thus, the scheme is well-allgned with the

local solution growth. By contrast, the exponential character is only

evident in an approximate sense for expllclt forms. A second order expli-

cit approximatlon is obtained from a substitution of the original equation

(Eq. 152) at time tn into the Taylor expansion of Eq. 153 to yleld the

linearlzation

du d( u)" fn + fn (t- tn) '
n

(157)

which upon integration beccues

2

i Un+ [(t_tn)+ "df" (t-tn) ]

u (du)n 1

un [A(t - tn) + A2(t - tn)2 ] 1+ _ _A- _n "

(158)

By comparison, the bracketed expression in the second equality is Just a

third order approx_mte of the exponential character in the iuplicit form

of Eq. 156. Unlike the _plicit form, the explicit scheme does not repro-

duce exact solutions to linear constant coefficient equations; but instead,

• tn)3.it gives approximations where the error is of order (t-
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In continuation, higher order linearizations can be obtained by

the inclusion of more terms in the Taylor series expansion of f and

as a result, higher order explicit and implicit schemes can be systema-

tically developed. As the terms are added, however, there is an increase

in the number of possible schemes at each accuracy level since there is

an increase in the number of choices for and between finite difference

and equation evaluations (from Eq. 152) for substitutions into the Taylor

expansion of f. To illustrate the development, consider the third order

accurate approximate equation

2

du f + /df_ /,du_ fd2f [du_ 2 df d2u] (t-tn)

n  TuJJ }n<t-tn)+Xdt/+  Ud-j]n • (159)

When implicit forms are desired, the substitutions are constrained by the

requirement that llnearity must be maintained at the implicit level. In

Eq. 159, the dlsallowed substitution is a forward difference for both fac-

tors in (du/dt) 2 which would then produce a squared implicit quantity.

The allowable choices are then selected from all other combinations of

forward and backward differences and evaluations of Eq. 152 which upon

substitution maintain the third order accuracy of Eq. 159. The required

accuracy here, is only first order since the term in question already con-

tains the factor (t-tn )2. Also to maintain accuracy, (du/dt)n in the

(t- tn)-term must be evaluated from Eq. 152 or be approximated with a

second order finite difference. With these considerations, fourth order

implicit schemes can be obtained. With the same accuracy considerations,

fourth order expllclt schemes can also be obtained. As an example, consider

the expllclt scheme derived from only direct substltutlons of Eq. 152 into

] !
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Eq. 159. From Eq. 152, we have

d2u df df du df f

dt2 dt du dt du
(160)

which, along with Eq. 152, is inserted into Eq. 159 to yield

(161)

A direct integration then yields the scheme

l i 2 _df _21 (t- t n) 31
[df_ (t-t n) [d2f

u- %..,.(,:-,:o)+_,du,1,.,+ +[_ ++_] j,+ _. j,+,..(+.6_>

When f - a u for some constant u, the scheme of Eq. 162 becomes

I 2

u (t- tn) 2

u = l+a(t-t n)+ 2 + , (16s)

which is Just the first four terms in the Taylor series expansion of the

a(t- tn) of the original equation (Eq. 152) When
analytic solution Une

f - i+ u2, the orlglnal equation is nonlinear and the scheme of Eq. 162

becomes

I 2 1 31 2u = un+ (t-tn)+Un(t-tn)2+(un+_)(t-tn) (l+u n) . (164)

For tn = 0 and un = 0, Eq. 164 is easily recognized as the first four

terms in the Taylor series of the known solution u(t) - tan(t) when the

initial condition u(O) = 0 is applied to Eq. 152. In each case and in
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general, the explicit scheme of Eq. 162 would deviate from analytic solu-

tlons to Eq. 152 by a fourth order term. To evaluate Eq. 162, or indeed

any of the schemes generated from llnearizatlon strategies, a stability

analysis would be required in each case. For llnear cases, complex

exponentials are inserted into the schemes so that an ampllflcatlon factor

can be bounded (often leading to step size limits) and examlued for both

dissipation and phase errors (as plotted in [22], for example). In non-

linear cases, there is usually an intuitive extrapolation from the llnear

analysis applied to a local llnearlzation. Alternatively, energy methods

can be applied'(e.g. [104]) when the analysis is tractable. Altogether

however, the stability analyses can be very complicated and, for nonllnear

problems, often produce limited information. As a coarse rule of thumb,

implicit methods are usually more stable than explicit methods. As a con-

sequence the methods of llnearlzation considered on the scalar equation

(Eq. 152) will be applied to the general system of Eq. 147 to develop a

general Crank-Nicolson scheme. Other schemes could also be obtained in

parallel to the scalar case but will not be pursued here.

A Crank-Ntcolson Scheme

The numerical scheme that Is developed here is an extension of the

classical Crank-Nicolson scheme to cover the general equation form given

by Eq. 147 and to still .uaintain second order accuracy. In the well-centered

framework of Crank-Nicolson we have the second order accurate scheme

(sl)n+I - (Hi)n

h = (Fi)n+i
• (16s)
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where h = in+ 1 - tn and the subscripts Involvlng n will denote levels

of t rather than a spatial dimension as in Eq. 147. No confusion will

result, however, since spatial dimensions are implicit in the summation con-

ventlon and do not appear explicitly. To extract the solution vector and

to develop the nonlteratlve impllcit scheme, a sequence of llnearlzatlons

must be applied to both sides of the Crank-Nicolson statement (Eq. 165).

The same considerations as in the scalar case of the previous section will

apply. From a Taylor expansion of the right hand slde about level n, we

maintain accuracy by setting

_Pr

, (166)

where the chain rule (including Eq. 149) has been applied. The n-level

evaluations in the first order piece are straight forward with the exception

of the quantity (_um/_t)n . This can be evaluated either by a finite

difference or directly from the differentlal equations with D k of Eq. 151.

If the latter approach is taken, then the fundamental implicit part of the

basic Crank-Nlcolson scheme is lost. Thus, a finite difference shall be

used. Since the term itself is first order, the simple first order forward

difference is sufficient, and the expression becomes

_Pr_ , m

(Fi)n+_ - (Fi) n + _--_'-In h + _pk _--_} _Un+l- u:) ,
ul n

where the order of the factors in the last term is important since

is a differential operator (Eq. 148) acting upon the solution vectors.

(167)
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On the left hand side of the Crank-Nicolson scheme, a difference

quotient o£ fluxes must be evaluated wlth a maintenance of second order

accuracy. To Inltlally avoid the expllclt appearance of differential

operators, the chain rule expansion of Eq. 149 wlll be reserved untll a

Taylor expansion of the difference quotient has been completed. The

expansion with second order Errors is given by

(Hl)n+ 1 - (HI) n {3Hil = C3HI 3Hi _Pkr.1

_ °_Jo_ _+_:o__p_

(168)

' ,<+ + .---_..• +

n

+ - to_,</,A_-/,,t_/,,+,..

where, for notational convenience,

TI :!
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and

_Hi h B2Hi

ai - _ + _ _T2

s 3_I

bi£= h 3T_)p"-'-_

r BHi B2Hi

Cik. ___ +h k

_Pr _Pr _T

L"
k £

_Pr_Ps

(169)

The tlme-like dependence of solution independent parameters outwardly

enters the scheme through the derivatives with respect to T which was used

in place of t to separate the dependence in question from the general t

dependence. Such parameters• we recall• can come from t-dependent geometry

which leads to t-dependent metric data (eg.• Eqs. 85-86) or equlvalent data

(eg.• Eqs. 122 and 138). The derivatives with respect to T occur only in

s r
the coefficients ai, bi&• and Clk. When the t-dependence occurs only in

m s r reduces to the
u • the coefficients ai and biA both vanish and Clk

k sr

Jacobian transformation of Hi with respect to Pr" The expression of die k

is independent of T-derlvaelves and is easily identified as the Hessian of

k A
H i wlth respect to both Pr and Ps which is scaled by h/2.

A direct evaluaeion of the (n+})-level derivatives in Eq. 168 frem Dk

in Eq° 151 would lead in saneral ¢o a nonlinearity at the implicit level. The

nonlinearity is clearly avoided• however• with the finite difference formula-

tion

• (17o)
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which is second order in h because of the central difference. The first

factor is now a differential operator (Eq. 148) acting upon the difference

quotient. Upon substitution, Eq. 168 becomes

(Hi) - (Hi)
n+l n

h

+
r sr 8Ps

ik+di£k _- _-m|. "h

(171)

where it remains to determine the n-level t-derlvatlves in a manner which

preserves second order accuracy.

TItI T
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S sr

Since both bi£ and d,i£ k are first order in h, the evaluation of the

respective derivatives need only be first order accurate. While the

S sr

choice for the biA has no further constraints, the choice in the diA k

term must also be restricted to explicit evaluations, for otherwise, a

nonlinearity would result. With a forward difference, the nonlinearity

would occur in the form of quadratic terms in the solution variable which

is the same problem that occurred in the discussion of Eq. 159. Conse-

quently, the simplest options are either to use a backward difference to

time level (n-l) or to directly replace the derivative with an evaluation

from Eq. 151. To avoid the extra storaEe that would result from a three-

level scheme, the second optton will be used. When, in addition, a

forward difference formulation (Eq. 170) is used for the b_E Eq.

171 becomes

(Hi).n+l_ (HI) n k (m _ m)
Cik + diAk_s)n _u m K , (172)h = (al)n + (b_k+ r sr _£. _P____rrUn+l Un ,_

where

. _Ps

Qs _u j

is not a differential operator but is instead a function determined by the

application of the differential operator represented by its first factor

(Eq. 148) to the Jth solution derivative Dj obtained from Eq. 151.

S

On re-examination of the biA-terms,we observed that there was some

degree of choice in the evaluation of the t-derivative. This degree of

freedom can be used to advantage. For any coefficient operator elm that
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is first order in h, we have second order relatlon

(elm) n Dm)n- _ = 0 , (173)

which can be added to Eq. 172 without a change of order. From the addition

the difference quotient in H i is then given by the expression

m m

m r -sr _. _Pr

(ai)n + CeimD )n + Cb_k+Cik+d_kQs> ---_u_ ei n . (17_>

When eim= O, the effect is to represent b_k - terms with finite

differences; when elm- b_k(_p_/_um), the representation is entirely an

explicit evaluatlon. Moreover, the selections for elm can be used to

shift any number of terms between implicit and explicit levels. The reasons

for such a shift can arise from scue favorable stability or matrix inversion

property or from some simplification in the solution procedure. The effect

of the shifts is to be viewed within the context of the extended Crank-

Nicolson scheme which on combination of Eqs. 165, 167, and 174 is given by

[(b_ + r " °st ^E h _Fi_'Sprk i_]elk* oi_k_s-_ :-kl _ m - e m m
• oPr / ou n (Uu+l- un)

[,"'- 1= h i+ h _ -a i elmD m -
111

(17s)

On exa_tnatlon of nhe coefficients (Eq. 169) for the sche_i, the shifts can-

not be used to eliminate the i_pllctt level Jacoblen transformation operator

(_Hi/_u m) since it is independent of h while elm is first order in h.

For the same reason, the t-derlvatlves of parameters (_HI/_T) also cannot

!I!I!
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be shifted.

and when H i and F i depend upon

Crank-Nicolson scheme reduces to

_u_ au"_ut

t only through

When there is no shift between implicit and explicit levels

(p_), the general

k

_-k_)Fi_)Pr ] / mum - __- .
_Pr _um n(Un+l h(Fi)n

(176)

i
Moreover, when Hi - u , we have

2 ap_ _um)n (utrbl- un) " h(Fi)n ' (177)

which is the standard form of the Crank-Nicolson scheme. In a parallel

manner, the same formallsm can be applied to obtaln a wide varlet 7 of schemes

for the treatment of the t-dependence. In particular, when the Crank-

Nicolson centering is replaced by a variable balance between levels n

and n+ 1, as In[lOS], the same derivation w111 work s_nultaneouely for a

group of schemes.

To _mplement the schemes, the spatial derivatives must be evaluated in

some fashion. The sinplest evaluation is accomplished with the use of

central differences for interior points and one-sided differences for

boundary points. For any function f(t,y) and for a constant mesh increment

be the operator replaces the c ponent bylet

+kA_ in the evaluation of f. Since mesh data is assumed only at

!

integral values of k, half point evaluation operators will be taken as

averages so that, for .ample, _- (d ÷ _0 )/2" NOW let Aj be a difference

operator that is deglned on the entire mesh by the central difference
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, (178a)

and

is an interior mesh point and by

• (178b)

3EJ0 - 4EJ_I + EJ2

AJI - , (17sc)

when y corresponds respectively to the mesh points wlth the smallest and

largest values of ; which defines the lower and upper boundaries of

constant ;. A replacement of each differential operator (_/3;) by

Aj in Eq. 148 then yields a second order accurate finite difference opera-

tor which upon subetitut£on into the general Crank-Nicolson scheme (Eq. 175)

leads to a second order dlLfference scheme when boundary cond£tlon8 are in-

serted. Alterlmtlw forms for discretlzatlon include higher order dlfferences,

Pad_ fo_,[103], box schemes [59], and variable difference operator8 [22].

Witlh collocaticm or Galerk/a methods, both_ piece_lse po17nct_al ([54] - [56],

[95], .[48}_..mad speetr_Lt methods [57} can be used to represent the solut£on

m

un _atlwr tim. tim e_t_rm:ors. --

Alteruat_u4i-Direction_Implicit Methods

On discretizatiom, the general ntmeri_ scheme (Eq. 175) reduces co a

linear algebraic eystm of the form

" ' (179)

'] I
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where A and B are linear transformations derived respectlvely from

the discretization of the zero_t and first order parts of the t_plicit

operator and where _ is the discretization of the source vector which

is the explicit part. The solution vector _ corresponds with the dis-

cretizatlon of (ul- unl,u2 2 NUn N-Un,...,u - ). This form has been called

the delta form [105]. When B can be expressed as a sum of linear Crans-

formations, each of which leads to an easily solved system when used in

place of B, then Eq. 179 can be solved up to second order accuracy by

a successive solution corresponding to each part of the sum. Such a

decomposition into a sequence of easily solved parts was examined in the

general formulation of alternatlng-dlrectlon implicit methods due to Douglas

and Gunn [106]. For simpllclty, suppose that B-BI+B 2 where B1 and

and B2 each yield easily solved systems. For two-dlmensional appli-

cations without mixed derivatives, B1 and B2 are usually taken to

be the transformations corresponding respectively to derivative discretl-

zatlons grouped in the given directions. That Is, yl-derlvatlves are

contained in B1; y2-derlvatlves, in B2. With the sum, Eq. 179 becomes

{A + h(B 1 + Bz) }_n+1 " ] " (180)

By the addition of h2BIA1B2-- to the implicit side, the second order

accuracy of the system does not change and we get the factored form

(A+hB I)A-I(A+hB 2) - _ , (181)

which can be split into
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(A+hB1)'_, - _ , (182a)

and

CA+hB2)  n+l " (182b)

When only first and second derivatives appear and are approximated by

the difference operators of Eq. 178, the split system of equations is

solved as a sequence of block trldlagonal or nearly block trldiagonal

systems. If the boundary conditions are periodic or extend inward by

more than two mesh points, the deviation from a pure block trldlagonal

form occurs. For block trldiagonal systems, the inversion is efficiently

done with Gaussian elimination by means of the Thomas algorithm. The slight

deviations from pure block trldiagonal forms do not cause much addltlonal

work. Thus, in each case, Eq. 182a Is efficiently solved as a sequence

of one dimensional (block tridlagonal) problems corresponding to each

mesh line in the yl-dlrectlon. Upon completion, _, is defined over the

entire mesh whlchmeans that Eq. 182b is then formulated over the entire

mesh. The solution of Eq. 182b is performed, as in the first step, as a

sequence of one dimensional problems corresponding to mesh lines in the

y2-dlrectlon. The y2-dlrection sweeps through the mesh then completes

the calculation for the solution increment _n+l" The solution vector

in the calculation is given at each mesh point by (ul,...,u n) -

+ (unl ,...,unN) which iS evaluated for both * and n+l values. An

_n = 0 which is consistent with theevaluation at the n-level yields

definition of _ as the difference of solutlon values from the n-level.

/II
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As a result, Eq. 182a can be rewritten as

A** + hBl* , + hB2* n - , < s3)

which deviates from the original linear algebraic system of equations only

in the evaluations of _ at * and n rather than uniformly at n+l.

Since the form of the original system is retained, the boundary conditions

for the solution at * can be obtained from the original system. The

implication for fluid dynamics problems is that the boundary conditions

at * can be given a physical meaning. A similar form and argument can

be given applled for the solution at n+l (in Eq. 182b) for the second sweep.

When Eq. 182a is added to Eq. 182b, and subsequently, when AT, is sub-

tracted fremboth sides, we have

T

which again retains the original form of the system and which again can

have boundary conditions derived from the original system. Taken together,

the two sweeps corresponding to the two alternating direction implicit

(ADI) directions are said to be consistent [I06].

In the Douglas-Gunn formulation, the ADI "directions" correspond to

the operators B i which sum to the operator B, which yield simply solved

systems, and which need not be associated with any particular coordinate

direction. As an example, consider a uniform mesh central difference

(Eq. 178) approximation (Eq. 179) to an initial value problem (Eq. 147

with initial conditions) without second derivatives but with any number of

spatial dimensions. Rather than spatial directions, the operator directions

can be taken as forward and backward difference directions respectively, as

in the LU decompositions studied by Jameson and Turkel [107]. Specifically_

the cantral difference operator of Eq. 178a can be written in the form
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AJ+ + Aj- where

and

, (las)

are the forward and backward differences. When all terms are then grouped

into forward and backward differences, the operator B is decomposed

correspondingly into operators B1 and B2. Moreover, the forward

difference operator B I could be directly written by using only forward

differences in the original derivation of Eq. 179, and similarly for B2

with backward differences. From this stage, the consistent Douglas-Gunn

splittlng (Eqs. 180 - 184) applies as in the case with actual coordinate

directions. However, by contrast, only two factors are needed for any

number of spatial dimensions and an LU decomposition, as in [103], results.

Matrix elements for the decomposition are matrix blocks in correspondence

with the number of equations and solution variables. To insure a stable

matrix inversion by Gausslan elimlnatlouwlthout pivoting, Jameson and

Turkel [_07] added a third derivative term to the original system and

considered coeffic_Knt choices to enforce diagonal dominance for both

upper and lower triangular factors. The same type of manipulation should

also come from a specification of elm in Eq. 175. The extension to

cases wlth second de_vat£ves follows the same format and again results

in an LU decomposition. The additional mesh point dependence required

for second derivatives translates, here, into an_upper trianKular factor
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U and a lower trlangular factor L with a larger band width than in

the pure first derivative cases. Wlth further increases in band _rldth,

cases with higher derlvatlves can be considered. In any case, when

Vouglas-Gunn splitting is applled to decomposltlons into forward and

backward differences, an implicit analogue to the orlginal KacCormack

method [21] is obtained. A further LU decomposftlon Is given in

Steger and Warmlng [_08] where the spIittlng _s between positive and

negative eigenvalues.

In addition to splitting be_een forward and backward differences,

there are also variants for ADZ methods when the implicit directions

are aligned with coordinate directions. The alternating-direction

Galerkin method of Douglas and Dupont [1071 _s one example. Their

development is based on a tensor product structure for both operators

and function spaces. Further exm_ples can _lso be conceived when the

splitting is viewed as a succession of two-point boundary value problems

which upon assembly yield a solution at a given t4me level, provided Chat

there is stability and convergence to the correct solution. The motivation

is to obtain a high order of accuracy so that fever points are needed to

compute a solution to within a given tolerance. Some cases aze the ADZ

spline collocation of Rubln and Koshla [54] at natural kno_, .the application

of collocation at Gausslan knots from deBoor and Schwartz [56], and the

spl/ned local solutions of approximate coefficient: systems studied by

Pruess [ 73].
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Solutions on a Composite Mesh

When a flow through a multlconnected region is to be simulated

numerically, it is advantageous to use a discretlzatlon which is obtained

by the application of one or more coordinate transformations in a composite

fashion. The composite is obtained when transformations are smoothly Joined

together along parts of their boundaries, even if one transformation is

Just Joined to itself along different parts of its boundary. In the case

with one transformation, the Junctures are either branch cuts or periodicity

conditions as in the case with cascades of alrfoils. Also with cascades,

upstream and/or downstream grid resolution can be achieved with separate

coordinate systems. A composite mesh for a cascade of alrfoils is illu-

strated in Figure 9 where the upstream resolution is obtained by a Cartesian

system; the downstream, by a branch cut off of a cusped trailing edge. In

the flgure:the Cartesian system covers the rectangular region with (oriented)

boundary A B C X Y Z C BAH A. The other coordinate system has an outer

boundary GFEDXYZDEFG, a downstream boundary GIJPG, and an inner

boundary JKOLMNOKJ consisting of an airfoil contour OLMNO with an

attached branch cut that precedes the alrfoll in the orientation of JKO

and follows it in the orientation OK5. Both coordinate systems are bounded

from above and below by a periodic boundary ABCDEFG where each system

is Joined to itself, as in the case with the branch cut from the airfoil.

The Juncture between the systems is given by XYZ.

] !
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H,

A

Figure 9. The Mesh Topology for a Cascade of Airfoils with a Branch Cut from

a Cusped Trailing Edge and with a Cartesian Extension Upstream.

With a suitable mesh generation algorithm, the Junctures can be done smoothly

so that no special numerical approximations are needed for the derivatives

at coordinate system Junctures. Given two well-defined coordinate systems,

almost the entire region will be covered. The uncovered portions are given

by the two curved triangular regions XCD and ZCD which for purposes of

resolution should be made small enough to be on the order of a mesh size in

the local region. It is important to note that the uncovered regions are the

result of the mesh topology and are not coordinate singularities to be

associated _rith either coordinate system. A coordinate singularity would

yield a degenerate metric (Eq. 11) and degenerate equations (eg., Eqs. 75 -

82) which indeed is not necessarily the case for the coordinate systems which

border the uncovered regions. Schematics of typical coordinate curves are
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Jr

depicted with solid curves to designate one ADI-directlon and dashed

curves for the other. If there are n dashed curves of the form BNB

and m of the form IRSTUVP in correspondence with each coordinate

system, then the three types of solid curves MTYNH, LSEUN, and

KRFVK respectively contain re+n, 2m, and 2m mesh points. When

there are p mesh points along XYZ, q mesh points along DEFG , and

no mesh points internal to the sides of the uncovered regions XCD and

ZCD, the dashed curve IRSTUVP contains p+ 2q mesh points and the

dashed curve BWB contains p+ 2 points counting two periodic segments

ABC in correspondence with the top and bottom of the Cartesian system.

As the m dashed curves IRSTUVP are taken to vary from inner to outer

boundaries, the coordinate mesh around the airfoil and branch cut is

generated with a total of (p+ 2q)m mesh points. From the (p+ 2)n

Cartesian mesh points in the upstream extension, the p Juncture points

common to both systems must be deducted to yield a total of (p+ 2)n - p

distinct points and a Brand total of (p+ 2)n + (p+ 2q)m - p for the

entire mesh. Among the possible choices for m, n, p, q, only the choice

of p will cause a change in the number of mesh points simultaneously

for both systems. Wlth the other choices, the number of mesh points is

controlled entirely within the given coordinate system, Consequently,

another advantage with the use of more than one coordinate system is that

a local resolution for a given region can often be accomplished with the

addition of mesh points in a local coordinate system while there is no

increase in the number of mesh points in the other systems. As an example,

a resolution of an a/rfoil boundary layer and wake can be accomplished

with both a redistribution and an increase in the number (m) of dashed

T_tt
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coordinate curves IRSTUVP without an increase in the number of mesh

points for the upstream extension. In the ADI splitting along dashed

and solld curves respectively, the lengths of the resultant one-dlmenslonal

parts will vary within each ADI direction. Alone the dashed curves, the

lensths will be p+ 2 and p+ 2q as the type is varied from BWB to

IRSTUVP. Along the solid curves, the lengths are m+n and 2m

which are respectively the lonEest lengths obtained when periodicity

is applied. An illustratlon of the c_nputatlonal mesh with periodicity

indicated by point labels is given in Figure 10. In the rectilinear

computational space, the primed letters are used to denote points in

correspondence with the physlcal space in Figure 9. The dashed and

solld curves are a18o matching with Figure 9.

A s H s A s

B'

C ,D v CV, D'

S'......... Ti '

L M'

E !

U !

N' O'

F s G t

p v

l' J'

Figure i0: The Computational Space for the Cascade Depicted in Figure 9.
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With the assumption that X, Z, C, and D are the only mesh points on

the boundaries of the uncovered regions, C' and D' appear as the

same computational point but are distinguished by the association of

C' only with the upstream extension and D' only with the other system.

In cases with such complicated computational spaces, the theory of ADI

splitting is not very well developed and we must rely more on computa-

tional experience. Such experience has been gained on L-shaped regions

where, for example, a flow over a rearward facing step has been computed.

Also, some theory has been indicated in [110].

BOUNDARY CONDITION

Given a general form for the equations of motion and a numerical

method for their solution, general boundary conditions must be obtained

in order to develop a general algorlthm for the numerical simulation of

a flow field over any reglonwhlch is described by one or more coordinate

transformations. In addition to boundary conditions in coordinate direc-

tions, there must be the more general capability to specify boundary condi-

tions as linear combinations of functions and derivatives which are taken

in any direction and are applied to any scalar or vector quantity. For

most fluid mechanics problems, only derivatives of order two or less need

be considered. To form the necessary bom_dary conditions, expressions

must be derived for generally directed derivatives and for a decomposition

of the velocity vector into specified directions. With an assumed discreti-

zation from one or more coordinate systems, the coordinate frame (all ej

from Eq. 3) will be taken as a frame of reference since the geometric

boundaries of objects in a flow field are fit with coordinate surfaces.

t] |:
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As a result, the Cartesian frame will not be needed as it was for the

discussion on camber frames (Eqs. 125-129). Given the contravarian¢

expansion o£ the velocity vector field _ - vi_ i and a frame field of

unit vector fields _1' _2'''"_n ' the projection of the velocity vector

onto each frame field direction _j is given by (_* _j)_j - vl(_ i • _j)_j

and the sum of all projections yields the velocity decomposition into

the specified frame field directions which is given by

. vi(;i. (186)

As an example, suppose that a t_o-dIJnenslonal physical boundary is

described by a coordinate curve in the yl-varlable for some constant

2
value of y and that a velocity decomposition into normal and tangential

directions is needed for the boundary conditions. The tangential direction

+ +2
is clearly determ_ed by el; the normal direction, by • , as can be

observed from the definition o£ contravariant vector fields (Eq. 17) which

are illustrated in Figure 4. Upon normalization with Eqs. 7 and 21, the

unit frame field along the bounding curve is de£1ned by the unit tangents

_1 = e+l/gv_lz and the unit normals _2 " ;2/8V/_ " Again _rll:h ]_:i,- 7, 17.

and 21, the dot products e i + are obtained and the results are inserted

into Eq. 186 to give

= + _2 '/lv_ll+v2 gl2 \_ v 2 (187)

for the tangent-normal decomposition which is directly applicable when the

solution frame is the coordinate frame. For other solution frames, the
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coefficients must first be transformed into the coordinate frame to obtain

i
the contravariant components v for Eq. 187 in a manner such as given

in Eq. 128 where _i represents a different frame. The transformation

between solution and coordinate frames, as illustrated in the example,

also carries over in general to both decompositions and derivative ex-

pressions that are given in contravariant components.

Derivative expressions along a boundary and in arbitrary directions

can be obtained from the dot product of an arbitrarily specified unit

vector field f and the gradient operator defined in Eq. 47. When the

vector field directions f are locally integrated, a local coordinate

z is determ/ned in a neighborhood of the boundary by the condition that

18 the field of natural tangents (Eq. 3) to the coordinates in the

z-variable at points on the boundary. Since the natural tangets are of

unit length, z I8 an arc length variable (Eq. 9). Consequently, the

_-dlrection derivative operator with respect to arc length z is given

by

• v (lee)

For a function a, an application yields the z-derivatlve

(189)

By am application to the velocity vector, the z-derivative of velocity

beeoue8
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_=_-v_
_z

- ÷_yk O ei

. (_. _-/_Vi+v -

(190)

where the second equality follows from Eq. 48. For second derlvatlves,

consider another possibly different vector field of unit vectors h and

its associated local arc length coordinate w in the boundary region. The

general second derivative is then given by

_ - _. v _. v (19l)
_w _z

which is a repeated derivative in the same direction if _ - _ and other-

wlse is a mixed derivative. For a function a, we have

and for velocity,

whe1"e

_yl

a _ 6- _)L_s_+_k=) ÷w _-:" by_ ,i,

Bi . (_.:J,/_vi.,,._,.i
" "

, (192)

(193a)

(193b)

As an example, suppose chat normal derivatives are needed aC a bounding

surface described by curvllinear coordinates y2
n

,...,y for some constant

value of yl in Eq. 2. In a parallel manner to the velocity decomposition

example, the unlt normal vector field is obtained from che contravariant

basis field _1 which by definition (Eq. 17) is parpendlcular to the:basis

/
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÷ Upon division by its magnitude /gll
of boundary tangents e2,...,e n.

from Eq° 21, the unit normal vector flelds are given by

÷1
_=_ e____ (194)

By substitution, the normal derivatives with respect to arc length z are

given by

and

li
__%a=E________a

_z g/_ _yi

, (195a)

_Z 2 g_ _yi_ g_

_195b)

for a function a, and by

, (196a)

and

, (196b)

where

s_-.a__ +v_ rjz , (196c)

for velocity.

With the derivative expressions, extrapolation boundary conditions can

be directly specified in any direction by setting a derivative to zero in the

i] |



specified direction. When the unlt vector field _ defines the specified

direction and z is the associated curve arc length, the extrapolation

function is a polynomial in z of degree one less than the order of the

vanishing derivative. For linear extrapolation to a boundary, the second

derivative is set equal to zero at the boundary by use of Eq. 192 for

scalars and Eq. 193 for vectors, where in each equation, _ = 3. The coordl-

hate derivatives which appear in each equation must then be approximated

to at least second order accuracy. Nlth finite difference methods, one-

sided differences would be used in from the boundary while central differ-

ences could be used for the other coordinate directions. For a skewed extra-

polation, central differences would cause mesh points to appear on either slde

of the boundary mesh point where the derivative vanishing condition is applied.

When ADI methods are applied along coordinate directions, an implicit boundary

condition is usually applied for stability reasons, and as a consequence,

points on either side of the given boundary point must be evaluated at the

explicit level to avoid a lateral impliclt coupling along and near the bouv o

dary which in :turn would defeat the purpose of the ADI splitting. A skewed

extrapolation will generally result when the direction of extrapolation is

a characteristic direction which is used to avoid artificial numerical _efIed- -

tions from a transmissive boundary. As an example, a shock wave impinging

upon a free stream transmissive boundary should not be reflected off of i_-,

but instead, should pass through undisturbed. With the free stream Math

number, the shock angle can be computed relative to the velocity vector

and the resultant direction can be used for extrapolation. Fro- n_erical

experiments [11t] with a 45' shock angle, extrapolations were taken

xparately in directimas along the shock and _rmal to a tr_sslve boundary



-110-

intersecting the shock at 45u. Solutions were spatially marched in a

direction along the transmissive boundary and the only disturbance in

the flow was the shock wave of moderate strength. In the experiments,

the only nonreflectlnE boundary condition occured when there was an

alignment with the shock wave.

The extrapolation process given for first degree polynomials in z

carries over to polynomials oT an arbitrary degree J when the coordinate

derivatives are suitably approximated. In general, the coordinate deriva-

tives appear in the vanishing condition for the (J + 1)_t z-derlvatlve

of a quantity which defines the J_Jl degree polynomial in z for the

quantity. The (J + l)_t z-derlvatlve is obtained by (J + i) successive

appllcatlons of _/_z defined in Eq. 188 as f- V and illustrated for

general second derivatives in Eq. 191. In the case of zero_Jl degree extra-

polation in the f direction, J = 0 and the coordinate direction deriva-

tives appear only up to first order as can be observed from Eqs. 189 and

190 and should be approximated to first order accuracy. In continuation,

the first degree (above) and higher degree extrapolations will contain

coordinate derivatives of order up to that of the vanishing z-dlrectlon

derivative, each of which must be approximated to an accuracy consistent

with the polynomial degree in z.

Extrapolation boundary conditions of the various degrees are useful in

a variety of situations where boundary quantities can be approximated

entirely from an assumed solution smoothness in a given direction. Typical

cases occur with transalsslva boundaries where disturbances must exit with-

out reflection since the boundary locations are arbitrarily chosen to delete

a part of the physical domain. -Barring Junctures between coordinate systems
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(as in XY Z of Figure 9), the re_Ining transmissive boundaries are an approxi-

mation of _tntte distance where free stream conditions can be assumed as

knovn. As a consequence, even the specification (using Eq. 186) of

freestream values (Dtrichlet conditions) along the transmissive boundaries

can be viewed as a zero_ degree extrapolation from values at infinity.

_en the transmissive boundaries are placed in close proxi_tty to the

object under study, the approximation to infinite conditions will usually

not be accurate unless further information about the solution is used.

For example, in the study of Engqutst and HaJda [l12]_a linear tvo-

dtJnensional scalar wave equation is considered where the general solution

is a superposition of simple waves which is used to derive a pseudo-

differential operator (that contains a square root of di£ferential opera-

tors) as a nonreflecting boundary condition which in turn is approximated

to obtain differential operator boundary conditions for successive levels

of accuracy. In continuation, they applied their technique to the shallow

water equation and were able to reduce reflections at the trans_tssive

boundaries. However, when viscous compressible flows are considered,

the desired info_ation about the solution is usually not complete enough

to directly use the methods og Engquist and HaJda. Another method has

been considered by Hedstrom [113] and extended by Rudy and StriP,erda [114]

and [115] to obtain non-reflecting subsonic downstream boundary condttiohs

for pressure. The co_ditions increase the convergence rate to a steady

stata Lm e4u_es _aare a constant static pressure p_ can be Ms_d f_

the" s_eady state flow on the downstream trans_ssive boundary. Trans-

missive boundaries have been investigated £rom a n_ber of v_ewpoints

([li6] [124]) and further research on this subject is, needed, especially

when th8 boundaries are close to solid objects in the flow, By
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comparison, with supersonic transmissive boundaries, no specifications

are needed and an extrapolatlon of characteristic varlables (c. f. [118])

in characteristic directions could be expected to give successful results

in a number of cases for both implicit and explicit boundary conditions.

At solid boundaries to a viscous flow, the physical no-sllp boundary

conditions are used with the specification of zero velocity or some close

approximation to it. It then remains to determine the density or pressure

and the energy. Choices have varied from extrapolation to an application

of the equations of motion such as a differentiated continuity equation

(for doubly speclflably boundaries), a momentum equation, or a known

approximate potential flow solution. For implicit conditions, a time-

llke llnearlzatlon is necessary. In a parallel to boundary layer theory,

boundary conditions for surface pressure can be obtained from the normal

mosmntum equation as given by SteEer [29]. From the frame fleld viewpoint,

the normal momentum equation comes directly with the choice of a frame for

derivatlves where the normal direction is part of the frame.

Further types of boundaries include Junctures between coordinate systems

and surfaces about which a region Is extended by use of reflective symmetry.

The appllcatlon of reflective conditions can be accomplished with a small

bend of reflected mash pD/nts, wlth equations of motion, and with extrapola-

tion where even functions such as scalars and odd functions such as normal

veloclty .components are obtained from polynomials in a normal direction

variable z which respectlvely contain only even or odd powers. Junctures
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between a coordinate system or systems such as XY Z or the branch cut

OK5 in Figure 9 are given by periodic conditions where in effect the

boundary point is treated as if it were an interior point unless there

is a lack of smoothness in the mesh; and hence, a need for special treat-

ment as would occur wlth a derivative discontinuity which would require

one-slded differencing for finite difference methods. When the Juncture

Is an uncovered region caused by the mesh topology as in XC D of Figure

9, there is no requ/red special treatment provided that the region Is

small enough to not disturb the flow field solution beyond normal trunca-

tion error and that no mesh lines dead end at the region. In the latter

case, mesh llnes which dead end can be directly treated by extrapolation

or by one sided equations of motion.

Wlth the general mesh topology that caused the uncovered regions,

there is clearly the capability to resolve certain hlgh gradient regions

in a truely local sense and to still obtain a reasonable mesh in other

regions such as the Cartesian upstream extension ABCXYZCBAHA in Figure

9. In general, the simultaneous application of several coordinate systems

can be used to extend coordinate boundaries to approximate more closely

far fleld condtlons without a sacrifice in the basic mesh structure beyond

and near the solld objects where steep gradients exlst. As a consequence,

there is a balance to be made between a composite mesh extension with

slmple far fleld boundary conditions and a single coordinate mesh of llmlted

extent where the imposition of far field boundary conditions are more complex

since severe flow irregularities would be shed from the solld boundaries,

would probably not be dissipated when the close in transmissive boundary is

reached, and would have tO be passed out of the region without reflection.
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MESH GENERATION FROM COORDINATE TRANSFORMATIONS

As the state of computational fluid dynamics has advanced, so has

the desire to utilize these advances to perform complicated and extensive

flow field simulations. Included in the simulations are those which involve

the complex geometric boundaries and topologies which co_nly appear in

turbomachlnery. As the trend continues, the critical importance of the

mesh generation process has become evident. In the mesh problem a compllca-

ted region must be dlscretized in a suitable manner before the desired numeri-

cal simulation can even be attempted. The constraints placed upon the mesh

will vary with the flow field properties and with the numerical method to

be applied. The weakest constralnts are associated with finite element

methods since an integration by parts lowers the required level of smooth-

ness (dlfferentiabillty) and since the given region can be more generally

dlscretlzed with trlangles (with possibly one curved side, [ 48 ]) rather

than by rectangles. The major restriction on the triangles is that they

cannot become too distorted or else accuracy would suffer [ 48 ]. Besides

the topological generality, the main advantage of the trlanEular decomposi-

tion is that certain regions of critical IJaportance can be resolved in an

area sense. By contrast, the ummodlfled application of a single coordinate

transformation is restricted to-a grldded structure in which the addition

of coor_nate curves for the resolution of a given area will also extend to

othe_ "areas; thus, mesh points would be wasted. However, the problem of

reeolutlon in an area sense, u ,._.mined in Figure 9, can also be accomplished

with a composite of coordinate transformations. A major advantage with the

application of coordinate transformations, whether in an isolated sense or

in a collective sense, is that the matrix inversion problem is generally

i] IF
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simplter than for triangular meshes. Typical matrix structures associated

with coordfnate transformations usually have a high degree o£ regularity

(such as simple banded structures) rather than the more general sparse

matrix which requlres the application of speclal inversion techniques

([125] and [126]). For finite difference methods, the mesh must

have a high degree of regularlty and smoothness. Moreover, when a collec-

tlon of sufficiently smooth coordinate transformations are smoothly Joined

together to generate a composite mesh, finite difference methods can be

used to obtain solutions with the same topological and area resolution

properties that were intrinsic to flnlte element methods. In between

finite difference and finite element methods, there are finite volume

methods ([49] and [51]) which also require the structural regularity from

coordinate transformations but which require a lower level of smoothness

since the governing equations are expressed by an integral rather than by

a differential expression. In any case, no matter which numerical method

Is used, an examination of coordinate generation techniques is needed when

a general algorithm for flow fleld simulation is constructed to accept

regularly structured geometric data as input. In the previous sections,

various equation formulations, numerical methods, and bounder 7 conditions

were presented in a manner from which such an algorithm can be constructed

in a variety of ways for various classes of problems.

In the exam/nation of coordinate generation techniques, various types

of coordinates will be considered and evaluated in terms of the constraints

that are needed to adequately discrettze complicated regions for the purpose

of flow field simulation. The constraints arise from fluid dynamic proper-

ties, solid boundaries and their arrangement , Junctures between coordinate
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systems, and a desired general level of coordinate simplicity. The

creation of smooth Junctures between coordinate systems and the mlnlmlza-

tlon of mesh distortion throughout each system both lead to simplicity

for the entire mesh which on a local level can be measured by the metric

(Eq. 15). Simpllclty is obtained relative to the collectlve appllcatlon

of all constraints, and as a result, metric simplicity will be llmlted by

the constraints. In general, the broad classes of coordinate transforma-

tions in the order of increasing metric complexity are given by conformal,

orthogonal, and nonorthogonal transformations. A similar ordering also can

be given for general space-time transformations. To examine coordinate

systems either on an indlvldual basis or in a broad sense, the constraints

above are considered in geometric terms and are separated into the cate-

gorles of boundary specifications, uniformity specifications, and interanl

specifications. Boundary specifications include the basic geometry of

solid objects, the Junctures between systems, the boundary coordinates or

equivalently pointwlse distributions, the angles of coordinate curves which

enter a boundary, and the rates of entry for such coordinate curves. Unl-

formity specifications are applied to either local or global distributions

of coordinate curves or points to form a basis from which the curves or

points can be redistributed by an a priori specification of a distribution

function or by a solution adaptive approach, both without distortion from

the underlying transformation. Internal specifications are applicable when

an interior shape is needed or when an interior mesh Structure such as a

Cartesian or Polar ayste_ is to be mmooChly embedded within a global mesh

to simplify a flow field simulation in the given region. When boundary

geoRetry is specified without a required distribution of boundary points,

i] !



-i17-

conformal transformations can be used. When the distribution of boundary

points are also specJ_ied, conformal transformations are inadequate and

must be replaced by either orthogonal or nonorthogonal systems. As further

constraints are added, a greater degree of precision is required to control

the mesh in order to satisfy the given speci/ications. The requirement for

precise controls leads to the development of the general m_ltisurface trans-

formation. As a consequence, the discussion shall start with conformal

methods, continue to orthogonal and nonorthogonal methods, and end with

the multi-surface method.

Conformal Transformations

A conformal transformation is a mapping which preserves angles between

any pair of intersectJ_g curves. When a Cartesian system of curvilinear

variables (yl,y2,. ..yn) is mapped into the space under stmiy by Nm of

Eq. 2, the lines 7j(t) = (yl ,

tangents Qj (which are obtained by d_fferentiation with respect to t)

are Napped respectively into curves x _ 7j(t) and their natural tangents

ej given by Eq. 3. Under a conformal transformation, the orthogonality

(ui " QJ " _iJ ) between the curves Yi and yj _ast be preserved with the

image curves _ @ 7i and _ • yj which means that giJ " ei ° ej vanishes

for i # J. Si_tlarly, the orthogonality between the lines _j(t) -

yl ,yi-l,yi+t,yi+l _-i _+ct,_+l ...,yn) for c " 1 and -I,_go ,mge, D

must also be preserved. Consequently, the natural tangents e i + c ej

corresponding to c -I and -i must be orthogotml. Thus, 0 - (_i +_j ) "

_j ÷ :j ÷(_i- ) " _i" el - .ej - gll - gJJ for all i and J. As a result,
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the matrix of metrics is diagonal with equal entries; hence it has a

and from Eq. ii a Jacobian J - (gll)n/2. In
n

determlnant g " gll

terms of the 3acoblan, the metric (Eq. 15) for conformal transformations

is given by

(ds) 2 . [Jl2/n{(dyl) 2 + (dy2) 2 +...+ (dyn) 2 } , (197)

which in two-dlmenslons reduces to

(ds) 2 - IJ[{(dyl) 2 + (dy2) 2} . (198)

Also in two-dlmenslons, .functions of one complex variable can be applied

to generate conformal mappings when the functions are analytic. For

analytic functions, f(yl+ /_y2) . x I +_ x2, the Cauchy-Riemann

conditions are valid and are given by

_x I _x 2

_yl _y2

and (199)

which can be inserted into the definition of the Jacobian (Eq. 5) to yield

T] ! _-
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J

8x I 8x 2

_)yl 3yl

3x 2 3x I

_yl 8yl

/

!

where the last equality follows by another appllcatlon of Eq. 199. The

metric given in Eq. 198 can also be derived directly from the Cartesian

arc length expansion (Eq. 13) with the aid of Eqs. 199 and 200 which

develops in the manner

(ds)2 = (dxl)2 + (dx2)2 " _)yk dyk +_ _yk dyk

2[8x k _)xk\. 1. 2
:--_]ay ay + J(dy2) 2

= J(dyl)2 + ]_)yl 8y /
(2Ol)

-Jl(dyl)2 + (dy2)2[ .

With the L_o-dimenslonal coy:formal metr£c glJ = J_lJ from Eqs. 198 or 201,

the Chrlstoffel sysmbols from Eq. 37 become

2 _1,212 = _)
rl I - r12 " ._ (lo8 ,/J)

and (202)

2 i 2 L (lo8 4'J)
r22 = r = -rll = 3y2

The metric information including the resulting Chrfstof£el symbols, can be

used both to define a system of governing equations in the coordinates and

to examine the coordinate structure. Since the metric is determ_ed solely



-120-

in a scaled Cartesian sense with the Jacobian as the factor, the spatial

variance in the coordinate structure is Just a dilation. Upon discretiza-

tion, the dilation can be observed in a mesh of approximate squares which

very in size. For large or unbounded regions, the rate of dilation is

often quite large which, for viscous flow anlyses, poses a problem of ade-

quate resolution in upstream and downstream directions. In addition, the

conformal structure imposes a distribution of points along the bounding

contours, as can be observed from the analytic continuation arguments of

complex variable theory. Although a bounding contour may then be adequate-

ly .fit, the imposed distribution of points along the contour may also be

inconsistent with the distribution of solution gradients which would appear

with viscous flow problems. In contrast with the absence of control over

mesh dilation and the distribution of boundary points, an advantage is

the direct formulation of inviscid, incompressible potential flow informa-

tion which in itself can be useful.

When boundaries of the flow region can be fit with analytically formu-

lated transformations, when mesh dilation is of little concern, and when

the distribution of boundary points is unimportant, conformal transformations

are optimal in the sense of problem simplicity because of the metric struc-

ture (Eqs. 198 or 201) and the direct formulation. In a number of cases

boundaries can be fit by means of a sequence of simple conforms1 transforma-

tions. However, in most cases of practlcalimportance, the boundary shapes

are too complicated; and consequently, cannot be simply fit as desired. Thus,

approximate methods must be considered. For general airfoil shapes, the

method of Theodorsen and Garrick [127] has been extended by Ires [128] arid

applied to both cascades [12811 and two element airfoils [_30[ where, in each

)

if!TII
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case, the Fast Fourier Transform was used to galn computational effi-

ciency in the generation process. Each of those techniques maps air-

foils to near circles through a sequence of simple transformations which

is followed by a Fourier type transformation to take the near circle into

an exact one so that the overall transformation is conformal. For shapes

that are more general than airfoils, Schwartz - Chrlstoffel type trans-

formations can be applied to approximately fit the contours. The first

systematic Schwartz - Chrlstoffel technique was developed by Anderson

[131] who used the classlcal form wlth plecewlse llnear curves. This

technique works best for simply connected regions where no branch cuts

are needed. However, a basic limitation in th/s method is the poor repre-

sentation of wall currature which can be partially resolved by rounding

the corners in the manner discussed by Henrlcl [132]. In further work,

Davis [133] applled the curved-slded formulation from Woods [134] to remove

some more of the curvature problems. To alleviate the complexity that is

often required to fit boundaries with conformal transformations, nearly

conformal transformations have been used by Jameson [31] to remove the

need for a Fourier analysis on airfoil contours and by Caughey [135] to

remove the need for a precise fit with Schwartz - Chrlstoffel transforma-

tions. In each case, easily formulated conformal transformations are used

to obtain approximately the r_ht shape which is then made into a precise

fit by means of a simple shearing transformation. The result is a

slightly nonorthogonal system of coordinates. If the shearing transforma-

tion is replaced by the multi-surface transformation [136] to be discussed

in a following section, than orthogonality and even conformaltty can _be

retrieved on major portions of the region.
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Orthogonal Transformations

When conformalmappings are not easily obtained or when more con-

trol over mesh distributions is needed, the slightly larger class of

orthogonal transformations should be considered next since it will

still yield a fairly simple metric structure. For orthogonal trans-

" _i" ej vanishes when i _ J which leaves only theformations,
glJ

diagonal entries gii in the metric which then is given in the form

= g11(dy1)2 n 2(ds) 2 + g22(dy2) 2 +...+ gnn(dY ) , (203)

where the coefficients may be unequal. To clarify the distinction between

orthogonal and conformal transformations, consider a fixed point and the

coordinates in a small neighborhood around it: In the neighborhood, the

functions gil are nearly equal to their values at the point; thus, the

measurement of distance (Eq. 203) along coordinate curves is very nearly

given by distance measurements along the respective vectors ei in the

space of tangents attached to the point in question. When the functions

Ell are all equal, the distance measurement in the tangent space is merely

a uniform dilation or contraction of the original Cartesian system. Con-

sequently, lengthra_ios, and hence, angles are preserved between the Car-

tes£an sysem and the tangent space. But then the direction of a vector in

the tangent space corresponds precisely with the curves which pass through

the point and have the vector as a tangent. Hence, the transformation with

equal di_$onal entries preserves angles and is therefore confotmal by the

original defln/tion. Moreover, since the _Jepllcation of angle preservation

from a ,mtric form is a converse to the der£vatlon of the metric form from

ii I_
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angle preservation, the metric form as given by Eq. 197 can be used as

a deflnlclon for con_ormallty. Consequently. as the length ratios

/ g/_jj for distinct i and j deviate from unity, the transforma-

tion smoothly deviates from conformallty.

When t_o-dt_ensional conformal transformations are applied to obtain

a rotationally symnetric system of three-dt_nensional coordinates, the

resulting system is orthogonal but not conformal. In particular, such a

transformation is given by

1
X m U

2 3
x - v s4ny

4 3
X m V COS y

(204)

where f(yl+ /_--_y2) = u + /:_v is analytic. For the angle

Eq. 204 reduces to the _o-dimensional case where u - x 1 and

3
y " ,/2.

2
v=x and

the Jacobian J is g_ven by Eq. 200. With the aid of the Cauchy-Riemann con-

ditions (Eq. 199 with x I - u, x 2 - v), the Jacobian H for Eq. 204 is given by

H = dec

m n

9--V--u _)--V--u 0

3v sin y.3- _v
8Y1 . _ sin y3

3
v cos y

_v co I y3 __y.v 3 y3
ayl _y2 cos y -v sin

m m

.
(205)

m -vJ ,

mid the _trlc. by
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(de)2 - (dxl)2 + (dx2)2 + (dx3)2

+ [_yp_Vl(cosY3) dYI+ _V2(cosY3)@y. dY2- (vsin y3)dy312

[(a__-z/2+/____._21 + f/_u \2+/_,, 12] 2

+ [_yl By2 _yl _y2' dyldy2 + (v)2(dy 3)2

- 3(dyl) 2 + J(dy2) 2 + (v)2(dy3) 2

(206)

On substitution of the metric coefficients gll " g22 " 3, g33 = (v)2

into Eq. 37, the nonvanlshlng Chrlstoffel symbols become

R

_yl

2 .2r33 .LZog J_
ri2" rZ2 "-rzz _y2

rl3 v _vJ I
_y

J _y2 "

(207)
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_hen the two-di_nslonal con£ormal mapping f is taken as the identity

mapping, the rotatlonally sy_etrlc transformation of Eq. 204 reduces to

cylindrical coordinates with metric data gll = g22 = 1, g33 = (y2)2 and

d

a nonzero Chrlstoffel symbol F:Z33" -y2.

To generate orthogonal coordinates, there are methods which simply

compute orthogonal trajectories to a given fa_tly of surfaces and methods

which come entirely from the solution to a system of parltal differential

equations. For orthogonal trajectories in two dimensions, a family of

smooth non-intersectlng curves is generated between two bounding surfaces

and then, from a specified distribution of points on one boundary, the

orthogonal trajectories are computed untll the other boundary is reached.

When the family is composed of a continuum of curves, a smooth field of

normal vectors can be constructed and from each point on one boundary, a

curve with its tangent field determined by the normal field can be analy-

tically specified as an intgral which starts at the point and ends some-

where on the other boundary. When such integrals are computed for all

points on the first boundary, the family of orthogonal trajectories is

obtained which, on combination with the origlnally generated family, forms

an orthogonal coordinate systeL If the original family of curves is

generated not as a continuua but instead as a finite collectlon which al-

most un/formly subdivides the region, then orthogonal trajectories must be

numerically computed from curve to curve starting with the first boundary

and continuing, as before, until the second boundary is reached. An

algorithm to generate orthogonal trajectories to the finite family of

curves was 8/ven by McNally [137_. In McNally's method each trajectory

is advanced from curve to curve in three steps: first, a normal line is
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is sent from the present curve to the succeeding curve; second, a normal

line from the succeeding curve is sent back to the trajectory location on

the present curve; and third, the trajectory is advanced as a line which

is nearly half way between the previous two. The result is an approximate

set of orthogonal trajectories which converges to analytically defined

trajectories as the finite family converges to a continu_. Applications

of McNally's method were given by Graves [138] to generate orthogonal

coordinates from isolated objects to a surrounding far field boundary. In

each case, the trajectories were started from a specified distribution of

points on the object, progressed through the finite family of curves and

ended upon the far field boundary. As in all orthogonal trajectory methods,

the distribution of points on the final target boundary is not arbitrarily

specified; but instead, is determined by both the initial distribution on

the starting boundary and the choice of curves in the specified family.

As a consequence, the pointwrlse distribution on the far field boundary was

especially sensitive to the geometry of the isolated objects. Results were

generally good for convex objects since the trajectories were mildly dis-

tributed which lead to minor deviations from an arc length distribution on

the far field boundary. However, with concave objects, the trajectories

became severely bunched; and by the time the far field boundary warn reached,

the distribution was severely distorted relative to arc length. To relieve

the severe bunching o£ coordinate curves, Steger and Chaussee [ 139], in a

preli_dnary study, considered the orthogonality relationship (g12 = 0)

and a 3acobian specification (J in Eq. 5) as a pair of hyperbolic partial

differential equations to be solved from the isolated object into the far

field. On application to a highly concave object they were able to-relieve
/

i! I T



-127-

the bunching problem. In a similar manner, an initial value problem was

also considered earller by Stadlus [140] who generated orthogonal coordi-

nates from a different hyperbolic system with different specifications. In

either study, the solution to the hyperbolic system not only determines

the distribution of points on the outer boundary, but indeed also the

boundary Itself. For external flow problems over a single object, the

precise form of the far field boundary is not particularly important so

long as the geometric variations are mild. By contrast, however, the outer

boundaries for internal flows must often meet precise specifications. One

important example is an outer boundary where periodicity conditions are

required as in the case with cascades of alrfoils (eg. DE F G in Figure 9).

For such cases, we must be able to precisely specify both inner and outer

boundaries along with their polnt3rlse distributions. In a preliminary

study, the present author [14_]has considered a linear e11Iptlc system

derived from a specified metric. Addltlonal controls on general mesh

clustering also exist wlthln the system. However, the precise level of

control that is needed to specify an internal mesh structure Is not readi-

ly ava/lable in this context and for that purpose nonorthogonal coordinates

must be considered. In particular, with the multi-surfhce coordinates [136]

to be considered subsequently, such controls are available and can be applied,

for example, to establish a uniform distrtbutiozt of coordinate curves which

can be redistributed without distortion by any di_trlbutlon function.
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Non-Orthogonal Transformations

The capability to prescribe mesh properties is only partially avail-

able with orthogonal systems and can more readily be obtained with the

larger class of nonorthogonal systems. Among the first properties to

be prescribed were the spedflcatlons of both the boundary geometry and

the distribution of boundary points. As a generalization from the com-

plex variable techniques for conformal mapping, Laplace equations for each

Cartesian direction in the physlcal domain were solved in the rectillnear

domain of curvillnear variables with the boundary geometry and polntwlse

distributions combined into a specification of boundary conditions [142].

The boundary conditions are needed to obtain the prescribed properties

and are the cause of the deviation from conformallty into a nonorthogonal

system. As can be expected, this deviation is greatest near the physical

boundaries where there is a forced distribution of mesh points, and then

gradually, there is an approach to conformal conditions In going from the

boundaries toward the interior of the region. In addition to the specifi-

cation of boundary locations and poin_wise distributions, periodic boundary

conditions were also specified to obtain branch cuts of various sorts. The

location of and the point.rise distribution alone the cuts could not be given

in advance since such properties were then determined by the solution of the

system of partial differential equations. For applications to a cascade of

alrfoils, the periodic boundary then cannot be given by periodic boundary _-

conditions since there would be no assurance that the intended periodic

portions would even have the same shape. To obtain coordinate systems for

cascades of airfoils or blade shapes without the need to solve elliptic par-

ttJLI dlfferentlal equations, an algebraic approach was developed [143]. The
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observation was made that the boundary geometry and the potnL_lse distri-

bution along the boundary could be separated into an Intrinsic parameter

(in two-dimensions, usually arc length) dtscrtption of the boundary geome-

try and a choice of parameterlzatton for the potnt_rlse distribution which

can be applied relative to the intrinsic parametertzatton. With a general

parameterlzatlon t, the algebraic transformatlon was given by the simple

linear deformation

_'(r,'_:') " _l('_.') + r[_2('_ ) - _l(_)] , (208)

T -v
which flts the boundaries yl(t) and F2(t), respectively when r - 0 and i.

-k

For the cascade of airfoils, t Is a scalar t which parameterlzes both

the airfoil contour _i and an outer boundary _2 where periodicity Is

applied on portions above and below the airfoil. The perlodlc alignment Is

obtained wlth the same shape speclglcatlon for each port£on and wlth a choice

of parameterlzatlon that yields a precise matching of mesh points. An

example Is given in Figure II where three of the coordinate systems are

stacked on top of each other to display the perlodlc alignment. In addition,

the independent variable r was replaced by a distribution function R(r)

so that an attached boundary layer could be resolved. The dlstrlbut£on func-

tion [144] was chosen to be

a(r) - mr + (1-m)[l tanhD(1-r)I- tanh D " (209)

Here, the ratio of hyerboltc tangents is a homotopy parameter in the linear

deformation of the line R - mr into the liue R - m(r-2) + 2. The rate
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_r

A Cascade of NACA 0024 Airfoils. The camber curve is bent

so that the coordinate system can be aligned _th an arbi-
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of deformation is controlled by a damping factor D; this determines the

length of essential adherence to the llne R = mr . The slope m is

chosen so that the resulting llne would yield a unlform mesh which is

fine enough to resolve the given boundary layer region.

The dlstrlbunlon Is, in fact, a generalization of the distribution

due to Roberts [144]. For n mesh points and a constant a > O, his

distribution is given in inverse form as a map from a physical domain

[-a, a] into a computatlonal range [1,hi. From an inversion and a norma11-

zatlon of the range and domain to the interval ['i,I], his distribution

reduces to a normalized hyperbolic tangent. A rigid translation then

corresponds to the special case with m - 0. As a result, the damping

factor is the only control on the shape of his distribution.

Cascade coordinates have also been obtained [145] with a generali-

zation [146] of the earlier elliptic system [142] to one which is based on

Polsson equations rather than Laplace equations. The source terms in the

Polsson equations were used as forcing functions to push the coordinate

curves around within the region. With the cascade coordinates [145],

D1rlchlet boundary conditions were required to impose perlodlclty; and the

forcing functions were used to limit, to some degree, she mesh distortion.

In both the algebrs/c --d the partial dlfferentlal equation approaches,

however, the periodic methclng was continuous but not differentlable.

Slope discontinuities across the per£odlc boundary segments can be ob-

served from Figure ii and from the differential equation results when

the latter is stacked in a similar fashion. As a consequence, we must

not only specify the boun_-ry geometry and its pointYlse distribution,

but also the direction and the rate for which coordinate curves enter the

boundary. For higher order derivative continuity, even more specifications
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must be added to the list. However, in many applications first derivative

continuity is sufficient since higher order errors can be made small

enough to be dissipated, for example, by finite differences where the

errors are on the order of the truncation error. To obtain first order

derivative continulty at the periodic cascade boundaries with the

differential equation approach, either a higher order system with more

specifiable boundary conditions or else a method to determine sultable

forcing functions would be required. Since coordinate system nonsingularity

depends upon a maximum principle [147] which would probably be lost with a

2 2
higher order system (e.g., x y + xy - xy is a solution to the biharmonic

equation on [-i,0] x [0,1] which has a minimum at (-i/3, i/3)), the

determination of suitable forcing functions has the best chance of

success. With a branch cut specified by Dirlchlet conditions, some

success over a previous case [147] has been obtained by an iteration

on the forcing functions [148]. The iteration was necessary because

the choice of forcing function is coupled to Its affect only through

the solution to the system of partial differential equations. By con-

trast to the partial differential equation approach, the multl-surface

method [136] of coordlnate generation can be directly used to obtain

all of the desired specifications necessary to prescribe branch cuts

to any fixed level of smoothness. Moreover, it Is an algebraic approach

_tlch is computationally efficient and is multl-dimenslonal [149]. On

compul_sr-toa, _a ef|tctency comes about since the constructive process Is

done as a short sequence of lower dimensional problems. In addition,

precise local controls are available for the precise specification of

mmh form anywhere within the region under'consideration. Unlike the

forcing functtoas of the differential equation approach, the local con-

i! I
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trols are applied to a local region outside of which the mesh is not

altered. The difference is that the forcing functions are clustering

controls which can be applled locally but which change the mesh as a

whole due to the elllptlclty of the mesh generating system.

The Multi-Surface Transformation

When curv111near coordinator are employed in the numerical solution

of a boundary value problem, constraints must often be placed upon the

coordinates, in addition to the basic requirement that the bounding sur-

faces are coordinate surfaces of one or mere coordinate systems. The

locatlons of the constraints can occur anywhere in the problem domain.

On the boundaries, a particular point, flee distribution may be needed; in

regions near boundaries, a particular coordinate form may be advantageous;

and away from the boundaries, an internal coordinate specification may

also be required. Typically, the constraints will arise either to resolve

regions with large solution gradients or to cause some slmpllflcatlon in

the problem formulation and solution.

In conjunction wlth the demand for constraints, the general multi-

surface transformation [136] must be exaalned. The =mlti-surface trans-

formation is a method for coord/nate generation between an inner bounding

surface _1 and outer bounding surface _N" To establlah a particular

distribution of mesh points on each bounding surface, a common parameterl-

-D-

zatlon t is chosen for each surface. This Is equivalent to a coordinate

description of the surfaces which yields the desired surface mesh when the

parametric components of t are given a uniform dlscretlzatlon. With the

par_etrlc description, the inner and outer bounding surfaces are denoted

_I(_) and ._-(_) reepectlvely. At this sr.aSe, coordinates could beby
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generated along the straight llne segments connecting points of co-,-on para-

metric value on each boundlng" surface as in Eq. 208. In continuation, para-

meterlzed intermediate surfaces _2(_),... ,_N_I(_) are introduced so that

they can be used as controls over the internal form of the coordinates.

The intermediate surfaces are not coordinated surfaces; but instead, are

surfaces which are used to establish a vector field that is composed of

tangent vectors to the coordinate curves spanning the coordinate system

to connect hounding surfaces. _t is also assumed that the collection

of surfaces _i(_), _2(_),...,_N(_) is ordered from bounding surface

to bounding surface. An illustration is given in Figure 12. For a fixed

÷
parameter value t, there is a corresponding point on each surface. The

plecewlse linear curve obtained by connecting corresponding points is

given by the dashed curve in Figure 12. From the flgure, it can be ob-

served that the tangent directions determined by the piecewlse linear

-h

curve are piecewlse constants. As t is varied, the field of tangent

-4-

directions obtain their smoothness only in t. To obtain smoothness in

going from bounding surface to bounding surface, a sufficiently smooth

interpolation must be performed. The result is a smooth vector field of

undetermined emgnltude which gives the desired tangential directions for

coordinate curves connecting the bounding surfaces. A unique vector field

of tangents is then obtained by correctly choosing maEn/tudes so that, on

integration, the bounding surfaces are fit precisely.

In s_abols, a vector field tangent to the ptecewise-linear curves is

given by

iTl T
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between the k_ and (k+ 1) _t surfaces where k is taken to vary (if

N > 2) from the first bounding surface to the final intermediate surface.

These vectors are indicated in Figure 12. The coefficients Ak are scalars

which determine the magnitude of the vectors but not the directions. An

independent variable r is assumed for the spanning direction. A vector

valued function which is discrete in r can now be defined as a map from

r k into Vk for a partition r 1< ...< rN_ 1 and for k = 1,...,N-1.

For notational simplicity, we will take r 1 = 0 and rN_ 1 - 1. A suffi-

ciently smooth vector field _(r,t) is then obtained by a sufficiently

interpolation _(rk,_) = _k(_). With r as a continuous Indepen-smooth

dent variable, the r-derlvatlve of the coordinate transformation _(r,_)

is equal to the interpolant. Speclfically,

Dr m
k-1

(211)

where _k(rj) is unity at k = J and vanishes otherwise. Since the

coordinate transformation must be obtained from an integration in the

r-variable, the interpolant _k must be continuously differeutiable up

to an order which is one less than the level of smoothness desired for the

coordinates. The construction of the local controls mentioned above _rlll

rely heavily upon the development of suitably smooth interpolation functions.

the integral of Eq. 211 has a constant of integration equal to _i(_)If

and if the quantities _k(r) integrate to unity over the do=sin

0 < r _< 1, then a coordinate transformation which ,_,tches the desired

bounding surfaces is obtained. This also determ/nes the original vector

field s_Luce the coefficients Iwt be l_i_ by
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1

(212)

for k = 1,...,n- i. With this data, the multi-surface transformation

is given by

r

fo (x)dx
k,,l fo *k (y)dy

(213)

Tt is a simple matter to check that P(O,_) - PI(_) and P(1,_) - PN(_).

In the latter case the result follows from a telescopic collapse of the

sunnnatlon. On examination of Eq. 212, it is als0 apparent that each

tnterpolatory function _k need only be determined up to any product

with a nonzero real number. The geometric implication is that the vector

field interpolation is an interpolation only on vector directions.

Po17nom/al Transformations

Some global impllcatlons of the multl-surface transformation can be

illustrated by a sequence of polynomlal examples where the _k are of

degree N -2 for N - 2,3,4. For N - 2 the polynomial of degree

N - 2 - 0 is a constant function. On integration it is found that

AI_ i is unlCy and that the polynomlal _wo-surface transformation of

Eq. 208 is obtained. The coordinate curves consist of a family of straight

line segments connecting the bounding surfaces at common t-values, and a

second family of level (r - constant) curves which are the result of a

uniform linear deformation along the line segments of the first family.

Clearly, the only possible specifications are for positions on each surface,

for angles on each surface, or for a position on one surface and an angle

on the other. Consequently, there are oRly two degrees of freedom.
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In the case wlth N = 3, another degree of freedom is added, the poly-

mlal degree is N - 2 - I, and the partition is given by 0 - rI < r2 - 1.

Each _i must vanish at rj if i _ J and must be nonzero at r i. The

simplest such functions are _1 " 1 - r and _2 i r. Upon substitution

into Eq. 213 and after some simplification, the polynomlal three-surface

transformation becomes

_(r,_) - (i- r)2_l(_) + 2r(l- r)_2(_) + r2_3(_) • (214)

The coordinate curves connecting the bounding surfaces

now biparabolic curves which leave

end on _3 from the direction of

nation of

_1 and _3 are

_I in the direction of _2 - _I and

_3 -_2" This should be clear on examl-

_--_- 2(1-r)[_2(_)-]_l(_)] + 2r[_3(_)-_2(_)]Or

i

- 2[_2(_) - ]_1(_) ] + 2r[_3(_) - 2_2(_) +_1(_) ]

(215)

which is the derivative of Eq. 214 and a special case of Eq. 211. The

remaining coordinate curves are the level curves of constant r which are

deformations of the boundary curves alone the biparabolic curves. An example

of a transformation, generated from Eq. 214, is presented in Figure 13. In

_1 is an ellipse with a major axis ofthe example p the inner boundary

unity and a mlnor axle of .25. The outer boundary _3 and the intermediate

_2' _re generated respectively, 2.4 and 1.2, units away from thecurve

elliptical surface in the direction of the outward pointing unit normal vector.

Then the outer boundary _3 was parameterlzed by its arc length. From the

i||
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Figure 13. Coordlnates generated from Eq. 214. Outx,ardly directed curves

are blparabollc arcs; circumferential curves are unlformly

distributed contours.

c_tructlon of P2' it 18 clear that the blparabolle curves must leave

the elllptlcal surface orthogonally. With the concurrent specification

of positions on each boundary, orthogonallty on the outer boundary cannot

be obtained. In su_nary, the boundary speclflcatlons of two positions and

one angle is the most that can be applied. Alternatively, it would also

be possible to specify two angles but only one position. The result is

that there are only three degrees of freedom corresponding to N - 3.

The case N - 4 will lead to yet another degree of freedom. The geo-

metric implication is that the eurve whlch connects the bounding surfaces

can inflect; and thereby, adjust to specifications of both angle and posl-

tlon on each bounding surface. This notion is consistent with the anti-

clpated result of employing blcublc curves in the r-varlable. Within the

structure of the general multl-surface transformation an assumed partlt/on

0 - r1< r2 < r3 = 1 leada to the functions %1 = (r-1)(r-r 2),
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_2 " r(r- I), and _3 = (r- r2)r which are defined up to real multiples.

The polynomial four-surface transformation is then given by

• _(r,_) - (l-r)2[l -alr]_l(_) + (al+2)(1-r)2r_2(_)

+ r2[l-a2(l-r)]_4(_) + (a2+2)r2(l - r)_3(_) ,

(216a)

!

where

2

al = 3r2 - 1 -' (216b)

and

2

a2 " 3(1-r 2) - 1 ' (216c)

As in the case with N - 3, it can be observed from Eq. 211 that the

bounding curves are intersected at angles determined by the vectors

_2 - _i and _4 - _3' respectively. In this case, as in the previous

case with N - 3, an example of a coordinate system around the same

ellipse and with the same outer boundary is given in Figure 14 where it

can be observed that the expected orthogonality at each bounding
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Figure 14. Coordinates generated from gq. 216 with B1 " B2 - 1/3

in Eq. 223. Ou_ardly directed curves are bicubic arcs;

circumferential curves are uniformly distributed contours.

surface is actually attained. This was produced by generating the inter-

mediate curves P2 end P3 with parameterizatlons that orthogonally

aligned them wlth the respective boudlng curves P1 and P4" The dis-

placement of each intermediate curve from its corresponding boundary was

chosen to be equal to one sixth of the distence between the boundaries.



-142-

Uniform Distributions of Coordinate Surfaces

In both of the elliptical examples there is one common but subtle

point which has some important consequences. It is simply that the

coordinates are uniformly distributed between the bounding surfaces.

This observation is apparent upon examination of the straight coordinate

curves in Figures 13 and 14. Each is vertlcal or horlzontal and is cut

into equal increments by the crossing coordinate curves.

In the case with N - 3, the intermediate curve was generated to

be halfway between the boundaries. The straight coordinate curves appeared

when, for a given parameter value, the corresponding triple of points was

collnear. Analytically, the r-dependence must vanish from Eq. 215; this

means that the tangent vector to the straight coordinate curves are each

constant vectors. The implication from Eq. 215 is that the intermediate

_2 be halfway between the boundaries. Moreover, upon a substi-curve

tution of this halfway condition, Eq. 215 becomes

Dr
(217)

which is valid for each parametric value t where colinearlty is satisfied.

In addition, the transformation Eq. 214 reduces to the form of Eq. 208

except with a suhscrlpt 3 rather than 2. By continulty there is a uniform

distribution of coordinate curves within some region containing the straight

llnesegments. However, from Figure 13 it Is clear that uniformity extends

well beyond most regions of reasonable size. For a satisfactory explanation,

further analysis Isnecessary. Since the uniformity here is measured in the

outward direction from inner to outer bounding surfaces, it is reasonable to

[11_,
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consider projections onto the vector P3 - P1 which is aligned with the

appropriate direction. To simplify the analysis, the scaled vector

-_ -4-

P3- P1

" II  1112 ' (218)

shall be used. Under dot product with the scaled vector, there is a

relative projection in which the original vector _3 - _I projects

to unity. The projection of the vector _2 -_1' connecting the inter-

mediate curve with the first bounding curve, is a number C = (_2-_i ) o_

which is assumed to lle within the unit interval. The implication

from this assumption is that the coordinate curves project to a monotone

function of r. For each fixed _, the projection of the corresponding

coordinate curve is given by

Sp(r,t) - • , (219)

which is proportional to arc length along _3 - _i" The Judicious choice

of scale in Eq. 218 is now evident since Sp(O,t) - 0 and Sp(l,t) - I.

The r-derivative, which is obtained from Eq. 215 is given by

_r " C + r(1-2C) . (220)

On integration, with the constant determined by Eq. 219, the result is

S = r[2C+r(l- 2C)]
P

(221)
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where the desired uniformity will now be obtained if the quadratic term

vanishes. When this occurs C - 1/2 and Eq. 221 reduces to the uniform

distribution S - r. In summary, this choice of C is the natural
P

generalization of the earlier halfway condition for straight lines.

In the case N - 4, we shall proceed directly to an examination of

the relative projected arc length rather than start with the straight

lines. There are now two intermediate surfaces, and two relative pro-

Jections along _4 - _i" These are given by

Cl " (P2- 1) " (222a)

and

c2- • , (222b)

where, in the same manner as before,

- Pl
._=

II II2
(222c)

The projections are assumed to be positive so that Sp is monotone

in r. Fro:here, a short calculation, similar to the previous one, leads

to the expression

_le re

Sp - r[3Bl+ 3(1- 2B1- B2)r + (3B1+ 3B2- 2)r 2] ,

2r 2

B1 = 3r 2 - 1 C1 '

(223a)

(223b)

F! I
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and

2 (I- r 2)

B2= 3(i-r 2) - ic2 "

A further calculation leads Co the relationship

(223c)

Sp(r,_) + Sp(1-r,_) = 1 + 3(B 1- B2)r(1- r) , (224)

which is a measure of syanneCry in the relative projected arc length of

Eq. 223. Absolute synnneCry occurs when B1 - B2 for then the relative

distance Sp(r,_) from the inner boundary _1 is equal to the relacive

distance 1 - Sp(1- r,_) from the outer boundary _4" A sequence of

symmetric examples are given with the elliptic coordinate systems in

Figures 14 - 17. The most notable feature in these figures is Chat as

B1 - B2 increases from 1/3 to unity, the distribution of coordinate curves,

although s_etric, become Concentrated in the center. Consequently, it

is clear that symmetry is certatmly a weaker condition then uniforuLtCy.

For uniformity, the requirement is that the quadratic and cubic terms in

Sp vanish. The implication is equivalent to B1 . B2 m 1/3. However, .

there is still some leeway since there is some freedom of choice in the

selection of r 2. Since C1 end C2 are assumed to be positive, it

follows from Eqs. 223b-c Chat the permissible selections are chose for which

1/3 < r 2 < 2/3. The relative projected distm_ces from intermediate surfaces

are then given by
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I 1

C1 " 2 6r2

and (225)

1 1

c2 = i"- 6(1- r2)

over the range of r2. An example with r2 - 1/2 was given in Figure 14

which was both symmetric and uniform. A further example is given in Figure

18 where a distribution function of the form in Eq. 209 was used in composi-

tion with a uniform transformation to pack points near an airfoil and its

wake. A view of the alrfoll region is given in Figure 19.

r

Coordinates from Eq. 216 with B1 = B2 - 1/2 in Eq. 223.

The coordinates are symmetric with a mild concentration

of curves in the center.
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Figure 16. Coordinates from Eq. 216 with B1 = 52 - 2/3 in Eq. 223.

The coordinates are symmetric with a concentration of

curves in the center.

¥1xure 17. Coordinates from Eq. 216 with B1 - B2 - 5/6 in Eq. 223.

The coordinates are symmetric with a severe concentration

of curves in the center.
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Figure 18. Coordinate system for a Joukowskl airfoil with a branch cut.

Figure 19. A detailed vlew of the coordinates near the airfoil surface.

TII
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Mesh point distributions on the airfoil (Figures 18 - 19) and on

the elliptical bodies (Figures 13 - 17) were each obtained from geometric

constructions. To concentrate mesh points in regions of higher curvature,

the rate of turning of the unit normal vectors must be controlled. The

method of control used in the examples is to create an auxiliary curve at

a fixed distance in the normal convex direction, to tabulate Its arc

length, and to project the arc length tabulation back onto the original

curve along Its normal directions. The arc length tabulation is done

cumulatively for each distinct component of the auxiliary curve as each

purely convex or concave portion of a body is traversed in succession.

As the distance is increased to an arbitrarily large value, each component

of the auxiliary curve approachel a circular shape; hence, the rate of

change of the nearly circular arc length (with respect to body arc length)

is approximately proportional to curvature (the spherlcA'l_dlcatrlx [i]).:

Consequently, when the distance is varied from zero towards Inflnfty, the

projected parameter varies from a body arc length parameter to a parameter

whose rate of change is proportlonal to curvature. An illustra_Ion is

given in Figure 20 where a convex portion of the body _I is shown wlth

an auxiliary curve at a distance of D units away. A uniform discretiu-

tion of the auxiliary curve arc length is represented by equally spaced

points on the aux/liary curve in Figure 20 and is projected onto Che convex

port,on where a concentration of points at the higher curvature location

can be observed exp'licltly.
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Figure 20. A Geometric Construction of a Curvature Sensitive Parameterlzatlon.

Transformations vlth Precise Local Controls

To establish local controls within the multl-surface transformations

(Eq. 213), the interpolants _ must vanish off of sultably small intervals.

To add precision, uniformity controls must also be obtained in a parallel

manner to the polynomial cases. Relative to uniform conditions, which can

now be local conditions, any arbitrary dlstributlon function can be applied

in an undlstorted fashion by a direct substitution of the function in place

of r. The simplest local Interpolants are the plecewise-llnear functions

which are nonvanlshlng over at most two intervals defined by the partition

0 = rI < r2 < ... < rN_ 1 - I. An illustration is given in Figure 21 where

distinct local interpolants are depicted for each partition point rk.
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rI r2 rk_ 1 rk rk+ 1 rN- 2 rN_ 1

Figure 21. Piecewlse Linear Local Interpolants for the Multi-Surface

Transformation.

To simplify the form of the multl-surface transformation (Eq. 213), the

height of each interpolant shall be adjusted so that each iuterpolant

integrates to unity; hence, the integral normalization is incorporated

into the Interpolants and is removed from the expllclt statement of the

transformation. With the notation hi - ri+ 1 - ri for 1 _ i < N- I,

the integrals are obtained from triangular areas, and by direct observa-

tlou, are 81ven by _l(rl)hl/2, _kCrk)(]__1+l_)/2, and __1(rN_l)h__2/2

in correspondence with the successive illustrations of FiEure 21. _hen

the integrals are set to unity, the he_hts become _l(rl) - 2/hl,

_k(rk) - 2/(__1+_), and _N_l(rN_l) = 2/__2 in the same order as

above. In correspondence, the explicit form of the normalized interpolants

is given by
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fo'=

I:1 <. r < _:2

=2 <--_ ! =_-I,

0

0

fo= _i ! = < .=k-i
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(226')
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lot

fo_: ¢I <-"_r < tS.--2
III

%-1<''> " .'_ +,,_ ,_a_2
No+

ge_e::Sl mult.i-su_face t_ans£ormtti°_ (Eq. 213),

_ich, o_ substituti°n into the

beads to the local f°_L'_

4_

•+¢_,o - ++/.":>+__¢':_t+_'¢'°'_'¢':>_ + m"_'+'<'i:_t+_+'¢_"_"+"="l¢">'1c_+.'_
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which is valid on the interval rk_ r _ rk+ I.

for 1 _ i _ k- i, there was a telescopic collapse of the first

+

in Eq. 213 to yield Pk(t); and since Gi(rk+ I) vanishes for

k+ 2 _ i _ N- i, the last N-k-3 terms simply did not appear.

Since Gi(r k) is unity

k terms

The

resultant local form of Eq. 229 can then be used to manipulate the coor-

dlnates for the r-values between rk and rk+ 1 with only the three

surfaces Pk' 1 and 2 and without any outside influence. To

delineate the curve segments in question, consider the interval endpolnt

evaluations

_rk, t) = [i- Gk(r k) ]_k(t) + Gk(rk)_k+l(t) ,

and (230)

_(rk+l,t) = [I- Gk+l(rk+ I) ]_k+l(t) + Gk+l(rk+l)_k+2(t ) ,

for each fixed t. Since Gk(r k) and Gk+l(rk+ 1) are contained in the

unlt interval, the evaluations _(rk,t) and _(rk+l,t) are observed from

Eq. 230 to respectively lie on the line segments that connect _k+l(t)

with (t) o_ecm side and with Pk+2(t) on the other. An illustration

for a fixed t value is given in Fisure 22 where the curve is observed to

malntaln convexity, a property which can be shown analytically.



_(rk+ I,

_k+2 ( t )

_(rk, t)

_k(t)

Flgure 22. A Local Coordinate Curve Section from Eq. 229 on rk_ r_rk+ I.

To obtain a precise control over the rate of travel along the coor-

dinate curve, the uniformity controls established in the polynomial case

must be applied to the current local forms fr_either a local or global

perspective. Indeed, the yardsticks for such rate measurements that were

respectively given in Eqs. 218 and 222c can be replaced by virtually any

other well-aligned vector field. A choice which can be used both locally

and globally is to set

_ =
(231)

for i > J. When i = N- 1 and J - I, the yardstick vector for uniformity

measurements reduces to the previous polynomial cases. Moreover, when

i - k+ 2 and J - k, the rate along the smallest local units can be controlled

with the placement of the local surfaces in the multl-surface construction

for the given range of r. In the same manner as in the polynomlal cases, let
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, (232)

be the relatlve projections of the llne segments as _ - J, J+l .... ,i-i

where the t dependence is assumed implicitly for notational convenience.

The relative projected arc length measured from _. is then defined to be
J

Sp(r,t)- [_(r,t)-_j(t)]• _ij(t) , (233)

which for r k _ r _ rk+ 1 reduces to

Sp = Cij j + Cij,j+l + ... + Cij,k_ 1 + Gk(r)Clj k + Gk+l(r)Clj,k+l, (234)

by direct application of Eq. 229. For uniformity, S must be linear in
P

r, or equivalently, _Sp/_r must be a constant. By substitution from

Eq. 226, the r-derlvative of S in Eq. 234 becomes
P

8S

= _k(r)ClJk+ _k+1(r)Clj,k+l

{ Ci_k + ci_.k+1}" - _-i+ _ _ + _+I r+ co_t_s

(235)

which is a constant when

ci_ k ciJ, k-1
I

_-l +_ _+hk+1
(23e)

From Eq. 232, the uniformity condltion of Eq. 236 reduces to
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rk+ 1 - rk_ 1 rk+ 2 - r k
• (237)

where the definitions of h& were used. Clearly, uniformlty depends upon

the location of surfaces _m and the choices of partition points. In the

case when the partition is uniform, the condition reduces to

%-0 , (238)

-it,.

which means that the discrete normal from Pk+l is orthogonal to the

direction of uniformity measurement.

The development of local methods with uniformity conditions extends to

higher levels of derivative contlnu/ty than the first order case considered

here. The general theoretical development was performed by the present

author under AFOSR Contract No. F49620-79-C-0132; and c_utet applic6Clons

of the theory are currently being examined by the present author under

NASA Lewis Research Center Contract NAS3-22117. Reports on both the

theory and the computational appllcatlons will appear in [150] and with

more detall in [151].

Solution Adaptive Meshes in the r-Direction

Relative to un£form conditions, distribution functions can be applied

either locally or globally and either by a priori specification (as with

Eq. 209 for attached boundary layers) or by an adaptive mesh technique.

When an ADI method is used with coordinatewtse implicit directions, the

governing system of partial differential equations is solved as a sequence

of two-point boundary value problems where the mesh can be adapted to the
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solutlou along coordinate curves in the r-variable. By adapting only

in the r-varlable, nonsingularlty of the entire transformation comes

directly from the monotonlclty of the r-dlstrlbutlon for each t, glven

that the fixed underlying multl-surface transformation with uniform

conditions is nonslngular. An example of adaptation in the r-dlrectlon

(with the two-surface coordinates of Eq. 208) is given in the study of

Yanenko et el. [ 82]. For two-polnt boundary value problems, adaptive

techniques which preserve monotonlclty have been based upon the minimi-

zation of truncation error ([75 ], [ 77], [ 79 ]) and upon geometric or

analytic properties of the solution ([ 76 ], [78]). To malntaln, con-

sistency in directions other than r, only methods which do not add or

substract mesh points can be considered. In addition, the adaptive tech-

niques for t_o-polnt boundary value problems are generally Impllclt.

The result is that an auxillary equation or equations must be added to

an existing system in order to obtain the benefits of a better mesh dis-

tribution. The balance then is between a mesh distribution which causes

more rapid convergence and the amount of work necessary to obtain it rela-

tive to the same level of convergence wlthan a priori specification or a

more dense mesh. Withtlme-dependent problems, an expllcltmesh adaptlon

is an attractive alternative since technlqueswhlch closely follow solu-

tlon properties can be developed without the creation of a posslblymore

complicated problem than was originally posed. Such an explicit construc-

tion can be entirely separated from the solution process by spatially

la_ing the mesh adaptation Just enough to not influence the solution pro-

cess on the current coordinate curve. For second order central difference

procedures, the amount of lagging is Just two coordinate curves behind the
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current one. As a consequence, an extra line of solution data would

have to be stored for the explicit adaptive process. To formulate an

adaptive technique that is virtually independent of the numerical method

used, a geometric technique will be outlined. Consider the velocity

profile in Figure 23 which is taken through a separation bubble which

could occur, for example, when a shock wave impinges upon an attached

boundary layer.

Auxiliary Curve

r Velocity Profile

Auxiliary Curve

/

Solid Nell

D

Figure 23. Adaptive mesh from the arc length of an auxiliary curve

generated D units from a velocity profile.

If an equal arc length partition of the velocity profile were to be projected

onto the r-direction axis (e.g., _N - _1 )' then the resultant mesh in r

would be adequate for the resolution of the velocity gradients, but not for
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velocity profile curvature which is a measure of the spatial rate of

change in profile shape. To also include the cruvature effects, an

auxiliary curve is constructed in the same fashion that was done for

pointwise distributions on one-dlmensional surfaces and illustrated in

Figure 20. When the auxiliary curve is taken D units away in the con-

vex normal direction, the projection of its arc length parameters along

the normals gives us a velocity profile parameterlzation which varies

from profile arc length to profile curvature concentrations as D varies

from 0 to arbitrarily large values. Since the velocity profile in Figure

23 has an inflection point where convexity properties change, the auxiliary

curve appears with two components. In the auxiliary curve arc length tabu-

latlon, the Jump between components at the inflection point is no_.__tadded

to the arc length, but rather the arc length sum is computed up the inflec-

tion on the first component and is r_hen continued by adding arc length

staring from the inflection on the second component. In the figure, an

equal arc length partition on the auxiliary curve is depicted by a sequence

of dots where inflection point treatment can be readily observed. As in

the case with surface parameterlzations, the equally spaced dots on the

auxiliary curve are projected onto the profile to yleld a curvature sensi-

tive distribution. When the profile distribution is projected orthogonally

onto the r-dlrectlon axis, we obtain a distribution R(r,_) whlch distri-

butes mesh points to resolve regions where the veloclty gradients (slopes)

are large and where the gradients are rapidly changing (curvature). In the

figure, the final images of the auxillary curve partition points are dis-

played as a sequence of dots along the r-axls. Due to the geometric con-

struction based upon arc length and projections, the distribution function

°

7

kT_lii
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R(r,_) is always strictly monotone; hence, when r is replaced by

R(r,_) in a fixed multl-surface transformation, nonslngularlty will

not be lost. Moreover, when unlformlty in the r-varlable is imposed

for the fixed transformation, the distribution is inserted without

A&

distortion which is absolutely necessary in such a process j. In appli-

cations of such a geometric technique, some consideration has to be

given to the treatment of local oscillations (wiggles) in a numerical

solutlon. Some filtering or smoothing must clearly be applied when

needed. To compare the difference between implicit and explicit solu-

tion adaptation, Ablow and Schecter [76 ] have examined two point

boundary value problems with both an arc length and a curvature control

to obtain a rather complex implicit relationship. With more generality

in the implicit approach, White [ 78 ] has developed a method based on

arbitrary monitor functions.

l
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